|   | 
Details
   web
Records
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T.
Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
Year 2023 Publication Geoscience Frontiers Abbreviated Journal
Volume 14 Issue 2 Pages 101494
Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation
Abstract (down) Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-9871 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143
Permanent link to this record
 

 
Author Gasse, F.
Title Hydrological changes in the African tropics since the Last Glacial Maximum Type Journal Article
Year 2000 Publication Quaternary Science Reviews Abbreviated Journal
Volume 19 Issue 1 Pages 189-211
Keywords
Abstract (down) Paleohydrological data from the African tropics and subtropics, including lake, groundwater and speleothem records, are reviewed to show how environments and climates from both hemispheres are inter-related. Although orbitally induced changes in the monsoon strength account for a large part of long-term climatic changes in tropical Africa, the Late Pleistocene–Holocene hydrological fluctuations rather appear to have been a series of abrupt events that reflect complex interactions between orbital forcing, atmosphere, ocean and land surface conditions. During the Last Glacial Maximum (23–18ka BP), most records indicate that generally dry conditions have prevailed in both hemispheres, associated with lower tropical land- and sea-surface temperatures. This agrees with simulations using coupled ocean–atmosphere models, which predict cooling and reduced summer precipitation in tropical Africa; the global hydrological cycle was weaker than today when the extent of large polar ice-sheets and sea-ice was a prominent forcing factor of the Earth’s climate. Glacial-interglacial climatic changes started early: a first wetting/warming phase at ca. 17–16ka BP took place during a period of rapid temperature increase in Antarctica. Next, two drastic arid-humid transitions in equatorial and northern Africa occurred around 15–14.5ka BP and 11.5–11ka BP. Both are thought to match the major Greenland warming events, in concert with the switching of the oceanic thermohaline circulation to modern mode. However, part of the climatic signal after 15 ka BP also seems related to the Antarctica climate. During the Holocene, Africa has also experienced rapid hydrological fluctuations of dramatic magnitude compared to the climatic changes at high latitudes. In particular, major dry spells occurred around 8.4–8ka and 4.2–4ka BP in the northern monsoon domain. Comparison with other parts of the world indicates that these events have a worldwide distribution but different regional expressions. In the absence of large polar ice sheets, changes in the continental hydrological cycles in the tropics may have a significant impact on the global climate system. Climate information gathered here allows to identify geographical and methodological gaps, and raise some scientific questions that remain to be solved to better understand how the tropics respond to changes in major climate-forcing factors, and how they influence climate globally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0277-3791 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ gasse_hydrological_2000 Serial 96
Permanent link to this record
 

 
Author Aldawsari, S.; Kampmann, R.; Harnisch, J.; Rohde, C.
Title Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review Type Journal Article
Year 2022 Publication Materials Abbreviated Journal
Volume 15 Issue 3 Pages
Keywords
Abstract (down) Ordinary Portland cement (OPC) is known for its significant contribution to carbon dioxide emissions. Geopolymer has a lower footprint in terms of CO2 emissions and has been considered as an alternative for OPC. A well-developed understanding of the use of fly-ash-based and slag-based geopolymers as separate systems has been reached in the literature, specifically regarding their mechanical properties. However, the microstructural and durability of the combined system after slag addition introduces more interactive gels and complex microstructural formations. The microstructural changes of complex blended systems contribute to significant advances in the durability of fly ash/slag geopolymers. In the present review, the setting time, microstructural properties (gel phase development, permeability properties, shrinkage behavior), and durability (chloride resistance, sulfate attack, and carbonatation), as discussed literature, are studied and summarized to simplify and draw conclusions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ma15030876 Serial 84
Permanent link to this record
 

 
Author Gimeno, M.J.; Tullborg, E.-L.; Nilsson, A.-C.; Auqué, L.F.; Nilsson, L.
Title Hydrogeochemical characterisation of the groundwater in the crystalline basement of Forsmark, the selected area for the geological nuclear repositories in Sweden Type Journal Article
Year 2023 Publication Journal of Hydrology Abbreviated Journal
Volume 624 Issue Pages 129818
Keywords Crystalline bedrock, Deep geological repository, Glacial meltwater intrusion, Groundwater mixing, Hydrogeochemical model, Nuclear waste disposal
Abstract (down) Numerous groundwater analyses from the crystalline bedrock in the Forsmark area have been performed between 2002 and 2019, together with thorough geological, geophysical, and hydrogeological studies, within the site investigations carried out by the Swedish Nuclear Fuel and Waste Management Company. The groundwater samples have been taken from boreholes down to ≈ 1000 m and the analysis include major- and trace-elements, stable and radiogenic isotopes, gases and microbes. The chemical and isotopic composition of these groundwaters evidences the presence of non-marine brackish to saline groundwaters with very long residence times (many hundreds of thousands of years) and a series of complex mixing events resulting from the recharge of different waters over time: glacial meltwaters, probably from different glaciations of which the latest culminated some 20,000 years ago, and marine waters from the Baltic starting some 7000 years ago. Later, meteoric water and present Baltic Sea water have recharged in different parts of the upper 100 m. These mixing events have also triggered chemical and microbial reactions that have conditioned some of the important groundwater parameters and, together with the structural complexity of the area, they have promoted a heterogeneous distribution of groundwater compositions in the bedrock. Due to these evident differences in chemistry, residence time and origin of the groundwater, several groundwater types were defined in order to facilitate the visualisation and communication. The differentiation (linked to the paleohydrological history of the area) was based on Cl concentration, Cl/Mg ratio (marine component), and δ18O value (glacial component). The work presented in this paper increases the understanding of the groundwater evolution in fractured and compartmentalised aquifers where mixing processes are the most important mechanisms. The model proposed to characterise the present groundwater system of the Forsmark area will also help to predict the future hydrogeochemical behaviour of the groundwater system after the construction of the repositories for the nuclear wastes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ gimeno_hydrogeochemical_2023 Serial 137
Permanent link to this record
 

 
Author Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I.
Title Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type Book Chapter
Year 2024 Publication Safeguarding Mountain Social-Ecological Systems Abbreviated Journal
Volume Issue Pages 115-126
Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs
Abstract (down) Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-12-822095-5 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263
Permanent link to this record