|   | 
Details
   web
Records
Author Frumkin, A.; Gvirtzman, H.
Title Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel Type Journal Article
Year 2006 Publication Journal of Hydrology Abbreviated Journal
Volume 318 Issue 1 Pages 316-333
Keywords Confined karst, Groundwater, HS, Maze caves, Rising water, Yarkon–Taninim aquifer
Abstract (down) It is proposed that a geothermal artesian karstic system at the central part of the Yarkon–Taninim aquifer creates the ‘Ayalon Saline Anomaly’ (ASA), whose mechanism has been under debate for several decades. A 4-year-long detailed groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied by a comprehensive survey of karstic voids. Results indicate the rising of warm-brackish groundwater through highly permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area contains ‘hot spots’, where groundwater contrasts with ‘normal’ water hundreds of meters away. The ASA temperature reaches 30°C (∼5°C warmer than its surroundings), chloride concentration reaches 528mg/l (50–100mg/l in the surrounding), H2S concentration reaches 5.6mg/l (zero all around) and pH value is 7.0 (compared with 7.8 around). Subsequently, the hydrothermal water flows laterally of at the watertable horizon through horizontal conduits, mixing with ‘normal’ fresh water which had circulated at shallow depth. Following rainy seasons, maximal watertable rise is observed in the ASA compared to its surroundings. Regional hydrogeology considerations suggest that the replenishment area for the ASA water is at the Samaria Mountains, east of the ASA. The water circulates to a great depth while flowing westward, and a cross-formational upward flow is then favored close the upper sub-aquifer’s confinement border.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ frumkin_cross-formational_2006 Serial 117
Permanent link to this record
 

 
Author Naghedifar, S.M.; Ziaei, A.N.; Naghedifar, S.A.; Ansari, H.
Title A new model for simulation of collection and conveyance sections of Qanat Type Journal Article
Year 2020 Publication Journal of Hydrology Abbreviated Journal
Volume 590 Issue Pages 125218
Keywords Richards’ equation, Saint-Venant equation, Numerical modeling, Qanat-aquifer system
Abstract (down) In this paper, a new numerical model has been developed for simulation of Qanat-aquifer system. This model employs quasi-3D mixed-form of Richards’ equation and 1D fully-hydrodynamic form of Saint-Venant equations to simulate subsurface and overland flow, respectively. In order to handle non-orthogonal grids, subsurface flow module benefits from coordinate transformation technique. Using the above-mentioned governing equations, the presented model is able to simulate water flow inside both collection and conveyance sections of the gallery as well as dynamics of groundwater and vadose zone from impermeable bed rock to the soil-air interface. Since measured data corresponding to the hydraulics of Qanats is scarce, the overland and subsurface modules have been validated with analytical, numerical and experimental benchmarks in the literature. Subsequently, the model was employed to simulate ten different hypothetical aquifer-Qanat systems with different properties including the depth of groundwater aquifer, roughness of the gallery and saturated hydraulic conductivity of the gallery-aquifer boundary and the influence of each the parameters was monitored on the outflow rate at the appearance point of each Qanat. Furthermore, the advance of water inside two initially dry galleries were simulated at different time levels up to steady state. Eventually, the streamlines have been shown at the steady state for two Qanat-aquifer systems. Although, the presented study sheds light on some aspects of Qanat-aquifer hydraulics, the validation of the presented model with in-lab or on-field data remains ongoing for the future researches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Naghedifar2020125218 Serial 254
Permanent link to this record
 

 
Author Heaton, T.H.E.
Title Sources of the nitrate in phreatic groundwater in the western Kalahari Type Journal Article
Year 1984 Publication Journal of Hydrology Abbreviated Journal
Volume 67 Issue 1 Pages 249-259
Keywords
Abstract (down) Elevated levels of nitrate occur in phreatic groundwater in the western Kalahari, Namibia. Nitrate in water containing 0.4–3.1 meq NO−3l−1, of widespread occurrence, has δ15N values in the range +4.9 to +8.0‰, suggesting natural derivation from the soil. The sporadic occurrence of very high levels of nitrate (> 4 meq NO−3l−1), which has δ15N between +9.3 to +18.7‰, reflects pollution derived from animal waste. The importance of considering the possible isotopic effects of denitrification, and the significance of leaching in the nitrogen budget of the Kalahari soil, are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Heaton1984249 Serial 278
Permanent link to this record
 

 
Author Johnson, R.S.H.; Alila, Y.
Title Nonstationary stochastic paired watershed approach: Investigating forest harvesting effects on floods in two large, nested, and snow-dominated watersheds in British Columbia, Canada Type Journal Article
Year 2023 Publication Journal of Hydrology Abbreviated Journal
Volume 625 Issue Pages 129970
Keywords Probabilistic physics, Forest hydrology, Attribution science, Flood Frequency Analysis, Stochastic hydrology, Nonstationarity
Abstract (down) Drawing on advances in nonstationary frequency analysis and the science of causation and attribution, this study employs a newly developed nonstationary stochastic paired watershed approach to determine the effect of forest harvesting on snowmelt-generated floods. Moreover, this study furthers the application of stochastic physics to evaluate the environmental controls and drivers of flood response. Physically-based climate and time-varying harvesting data are used as covariates to drive the nonstationary flood frequency distribution parameters to detect, attribute, and quantify the effect of harvesting on floods in the snow-dominated Deadman River (878 km2) and nested Joe Ross Creek (99 km2) watersheds. Harvesting only 21% of the watershed caused a 38% and 84% increase in the mean but no increase in variability around the mean of the frequency distribution in the Deadman River and Joe Ross Creek, respectively. Consequently, the 7-year, 20-year, 50-year, and 100-year flood events became approximately two, four, six, and ten times more frequent in both watersheds. An increase in the mean is posited to occur from an increase in moisture availability following harvest from suppressed snow interception and increased net radiation reaching the snowpack. Variability was not increased because snowmelt synchronization was inhibited by the buffering capacity of abundant lakes, evenly distributed aspects, and widespread spatial distribution of cutblocks in the watersheds, preventing any potential for harvesting to increase the efficiency of runoff delivery to the outlet. Consistent with similar recent studies, the effect of logging on floods is controlled not only by the harvest rate but most importantly the physiographic characteristics of the watershed and the spatial distribution of the cutblocks. Imposed by the probabilistic framework to understanding and predicting the relation between extremes and their environmental controls, commonly used in the general sciences but not forest hydrology, it is the inherent nature of snowmelt-driven flood regimes which cause even modest increases in magnitude, especially in the upper tail of the distribution, to translate into surprisingly large changes in frequency. Contrary to conventional wisdom, harvesting influenced small, medium, and very large flood events, and the sensitivity to harvest increased with increasing flood event size and watershed area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Johnson2023129970 Serial 245
Permanent link to this record
 

 
Author Heaton, T.H.E.; Talma, A.S.; Vogel, J.C.
Title Origin and history of nitrate in confined groundwater in the western Kalahari Type Journal Article
Year 1983 Publication Journal of Hydrology Abbreviated Journal
Volume 62 Issue 1 Pages 243-262
Keywords
Abstract (down) Data are presented for nitrate, dinitrogen and argon concentrations and 15N14N ratios in groundwater, with radiocarbon ages up to 40,000 yr. for three confined sandstone aquifers in the western Kalahari of South West Africa/Namibia. The nitrate is probably generated within the soil of the recharge areas, and its production rate during the period 3000-40,000 B.P. has remained between 0.5 and 1.6 meq NO−3l−1 of recharge water, with ° 15N between + 4 and + 8‰. Variations in the amount of nitrate and of “excess air” in groundwater recharge are found, and can only reflect changes in the environmental conditions during recharge. They must therefore be caused by the climatic changes that have taken place during the past 25,000 yr.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ heaton_origin_1983 Serial 95
Permanent link to this record