|   | 
Details
   web
Records
Author Martínez-Santos, P.; Martínez-Alfaro, P.E.
Title A priori mapping of historical water-supply galleries based on archive records and sparse material remains. An application to the Amaniel qanat (Madrid, Spain) Type Journal Article
Year 2014 Publication Journal of Cultural Heritage Abbreviated Journal
Volume 15 Issue 6 Pages 656-664
Keywords Hydraulic heritage, Qanat, Groundwater, Foggara, Water-supply, Amaniel, Madrid
Abstract (down) Engineering heritage refers to a broad variety of items of social, economic, aesthetic or historic relevance, including roads, dams, buildings and supply networks. Due to their utilitarian nature, their heritage value is often overlooked. This occurs even with those infrastructures that have played an essential role in underpinning the daily existence of entire civilizations. Underground water-supply networks provide an excellent example. Although there are exceptions, water networks tend to be functional in design, rather than monumental. Moreover, they present intricate linear layouts that often span several kilometres. This means they are costly to maintain once their operational life is over, and that they are prone to abandonment and destruction. Devising a priori protection strategies is important to preserve these valuable cultural assets. The following pages present a method to map linear structures based on archive records and sparse material remains. The method is illustrated through its application to the Amaniel qanat, a water-supply gallery built in Madrid, Spain, in the early 17th Century. An appraisal of the known remains was carried out first, leading to an inventory of galleries, shafts, shaft caps and deposits. This was followed by a thorough survey of over one thousand handwritten manuscripts, including physical descriptions of the aqueduct, budget accounts or water metering campaigns, among other documents. Known remains and written evidence were matched against original and auxiliary maps to reconstruct the itinerary of the aqueduct. This led to the identification of sectors where it is still possible to find remains in good condition. Thus, a priori mapping is advocated a valuable technique to locate and preserve these remains, as well as to devise non-invasive surveys and establish heritage protection zones.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Martinezsantos2014656 Serial 270
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract (down) Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stone201441 Serial 218
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract (down) Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stone201441 Serial 279
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract (down) Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ stone_naturally-high_2014 Serial 91
Permanent link to this record
 

 
Author Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y.
Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
Year 2014 Publication Hydrometallurgy Abbreviated Journal
Volume 150 Issue Pages 99-106
Keywords Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution
Abstract (down) Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201
Permanent link to this record