|   | 
Details
   web
Records
Author (down) Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B.
Title Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type Book Chapter
Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal
Volume Issue Pages 213-234
Keywords Distribution, Heath impacts, Remediation techniques, Sources, Uranium
Abstract Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-443-18778-0 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152
Permanent link to this record
 

 
Author (down) Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y.
Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
Year 2014 Publication Hydrometallurgy Abbreviated Journal
Volume 150 Issue Pages 99-106
Keywords Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution
Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201
Permanent link to this record
 

 
Author (down) Tamagnone, P.; Comino, E.; Rosso, M.
Title Rainwater harvesting techniques as an adaptation strategy for flood mitigation Type Journal Article
Year 2020 Publication Journal of Hydrology Abbreviated Journal
Volume 586 Issue Pages 124880
Keywords Rainwater harvesting techniques, Extreme rainfall, Runoff, Hydraulic modelling, Flood mitigation, Arid and semi-arid climate
Abstract The development of adaptation and mitigation strategies to tackle anthropic and climate changes impacts is becoming a priority in drought-prone areas. This study examines the capabilities of indigenous rainwater harvesting techniques (RWHT) to be used as a viable solution for flood mitigation. The study analyses the hydraulic performance of the most used micro-catchment RWHT in sub-Saharan regions, in terms of flow peak reduction (FPR) and volume reduction (VR) at the field and basin scale. Parametrized hyetographs were built to replicate the extreme precipitations that strike Sahelian countries during rainy seasons. 2D hydrodynamic simulations showed that half-moons placed with a staggered configuration (S-HM) have the best performances in reducing runoff. At the field scale, S-HM showed a remarkable FPR of 77% and a VR of 70% in case of extreme rainfall. Instead at the basin scale, in which only 5% of the surface was treated, 13% and 8% respectively for FPR and VR were obtained. In addition, the reduction of the runoff coefficient (Rc) between the different configuration was analyzed. The study critically evaluates hydraulic performances of the different techniques and shows how pitting practices cannot guarantee high performance in case of extreme precipitations. These results will enrich the knowledge of the hydraulic behavior of RWHT; aspect marginally investigated in the scientific literature. Moreover, this study presents the first scientific application of HEC-RAS as a rainfall-runoff model. Despite some limitations, this model has the effective feature of using very high-resolution topography as input for hydraulic simulations. The results presented in this study should encourage stakeholders to upscale the use of RWHT in order to lessen the flood hazard and land degradation that oppresses arid and semi-arid areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Tamagnone2020124880 Serial 240
Permanent link to this record
 

 
Author (down) Su, X.; Liu, Z.; Yao, Y.; Du, Z.
Title Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China Type Journal Article
Year 2020 Publication Ore Geology Reviews Abbreviated Journal
Volume 127 Issue Pages 103768
Keywords Geochemical composition, leach mining, Mineralogy, Ordos Basin, Sandstone-hosted uranium deposit
Abstract The Nalinggou–Daying uranium metallogenic belt is situated at the northern Ordos Basin, China. Petrographical, mineralogical and geochemical techniques were used to study the ore-bearing sandstones and host rocks in the Nalinggou–Daying uranium metallogenic belt. The present study shows that uranium minerals, i.e., coffinite, pitchblende, and brannerite, are mostly disseminated around pyrite and detrital particles. The ore-bearing sandstones are enriched in organic matter, with which this reductive environment influenced uranium leaching. The carbonate concentration of the uranium ores is markedly higher than that of the host rocks, and intense carbonatization occurs in the ore-bearing sandstones. In this case, the usage of the classical in-situ leach uranium mining technique by injecting H2SO4 + H2O2 solution produces calcium sulfate precipitate, which can lead to blocking of the ore-bearing strata. For this reason, laboratory and field uranium mining tests were conducted using CO2 + O2 in-situ leaching technology and were demonstrated to be successful, illustrating that this approach is technically feasible. Inhibiting ore bed blockage and increasing the amount of injected O2 are important for uranium leaching in this setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ su_petrology_2020 Serial 120
Permanent link to this record
 

 
Author (down) Strandmann, P.A.E.P. von; Reynolds, B.C.; Porcelli, D.; James, R.H.; Calsteren, P. van; Baskaran, M.; Burton, K.W.
Title Assessing continental weathering rates and actinide transport in the Great Artesian Basin Type Journal Article
Year 2006 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 70 Issue 18, Supplement Pages 497
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ strandmann_assessing_2006 Serial 116
Permanent link to this record