|   | 
Details
   web
Records
Author (down) Sedghi, M.M.; Zhan, H.
Title On the discharge variation of a qanat in an alluvial fan aquifer Type Journal Article
Year 2022 Publication Journal of Hydrology Abbreviated Journal
Volume 610 Issue Pages 127922
Keywords Analytical solution, Wedge-shaped aquifer, Image well, Areal recharge
Abstract Qanat is a passive (unpumped) horizontal well (or a slant well with a very mild inclined angle) that is capable of extracting water from aquifers by gravity. Many qanats are constructed along the radius of the alluvial fan wedge-shaped aquifers. Analytical modeling of such a qanat-aquifer system provides great benefit for quickly screening different designs of qanats and accessing the performance of qanat discharge in the field. The previous analytical modeling of discharge of qanats, however, did not consider the wedge-shaped aquifers. Thus, the goal of this research is to obtain semi-analytical solutions of discharge variations of qanats in alluvial fan aquifers with nearby pumping wells, subjected to areal recharges due to rainfall. The uniform head boundary is considered inside the qanat (because of its enormous permeability in respect to the background aquifer). The influences of the aquifer lateral boundaries on discharge of qanat and its sensitivity to hydraulic and geometric parameters are explored. The influences of the lateral boundaries on the discharge of qanat due to areal recharge and nearby pumping wells discharge are also explored. The results of this study can be utilized for multiple purposes: 1) to predict the discharge of qanat in an alluvial fan aquifer and explore the influences of the areal recharge and nearby pumping well discharge; 2) to estimate the hydraulic parameters of the alluvial fan aquifer depleted by a qanat; 3) to determine the location of the nearby pumping well to minimize its influences on the discharge of a qanat; 4) to calculate the water budgets of aquifers depleted by qanats and pumping wells and replenished by areal recharge among other applications. This paper is an extension to the work presented by Sedghi and Zhan (2020) (which concerns an infinite unconfined aquifer) for an unconfined alluvial fan aquifer setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Sedghi2022127922 Serial 267
Permanent link to this record
 

 
Author (down) Sardo, M.S.; Jalalkamali, N.
Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 17 Issue Pages 100754
Keywords System dynamics, Water resources management, Vensim, Management scenarios
Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266
Permanent link to this record
 

 
Author (down) Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomão, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P.
Title Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes Type Journal Article
Year 2022 Publication Science of The Total Environment Abbreviated Journal
Volume 807 Issue Pages 151753
Keywords Agrochemicals, Geogenic contamination, Punjab, Salinity, Shallow aquifer, Uranium enrichment
Abstract Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (\textless60 m) are more contaminated with U than from deeper depths (\textgreater60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3−, NO3− Cl−, and F− in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2− and CaUO2(CO3)3−, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 μg.L−1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F− (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_meta-analysis_2022 Serial 150
Permanent link to this record
 

 
Author (down) Rooyen, J.D. van; Watson, A.W.; Miller, J.A.
Title Using tritium and radiocarbon activities to constrain regional modern and fossil groundwater mixing in Southern Africa Type Journal Article
Year 2022 Publication Journal of Hydrology Abbreviated Journal
Volume 614 Issue Pages 128570
Keywords Radiocarbon, Residence time, SADC, Tritium
Abstract This study combines historical records of 14C and 3H in the atmosphere and soil with renewal rate and groundwater lumped parameter models to predict the abundance of 14C and 3H in groundwater over time. 624 groundwater samples from numerous studies, over four decades (1978–2019), in South Africa, Namibia, Botswana and Mozambique were collated to compare with predicted groundwater activities of 14C and 3H within the South African Development Community (SADC) region. Spatial datasets of carbonate bearing lithology, C3/C4 vegetation, summer/winter rainfall and coastal proximity were used to apply corrections to 14C and 3H data. Corrected values of 14C and 3H were compared with the theoretical abundance of these tracers, derived from the lumped parameter models, to estimate the general mean residence times and presence of groundwater mixing between modern recharge and older groundwaters. This study found that corrected values produced varying mean residence times derived from 14C ages (∼500–28500 years) and a wide range of potentially mixed waters within each aquifer system (0–100 % of tested wells) across the study area. The largest proportions of mixed groundwater, as well as the youngest mean residence times, were found in alluvial and primary fractured rock aquifers (e.g., western coast of South Africa and southern Mozambique). The smallest proportions of mixed groundwater were predicted in deep confined clay-rich aquifers as well as layered coal bearing carbonate sequences (e.g., Orapa, Malwewe and Serowe, Botswana). Insights into the proportions of mixed groundwater and mean residence times can help assess hydrological resilience on a regional scale. Such information is pertinent in promoting socio-economic development and increased water/food security in the SADC region. By understanding the resilience of groundwater resources, robust and informed strategies for water equality and GDP growth in the SADC region can be envisioned and implemented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ rooyen_using_2022 Serial 94
Permanent link to this record
 

 
Author (down) Romeo, N.; Mabry, J.; Hillegonds, D.; Kainz, G.; Jaklitsch, M.; Matsumoto, T.
Title Developments of a field gas extraction device and krypton purification system for groundwater radio-krypton dating at the IAEA Type Journal Article
Year 2022 Publication Applied Radiation and Isotopes Abbreviated Journal
Volume 189 Issue Pages 110450
Keywords
Abstract The long-lived radio-krypton isotope 81Kr (t1/2 = 2.29 × 105 yr) is an ideal tracer for old groundwater age dating in the range of 105–106 years which goes beyond the reach of radio-carbon (14C) age dating. Analytical breakthrough made over the last two decades in Atom Trap Trace Analysis (ATTA) has enabled the use of this isotope with extremely low abundance (81Kr/Kr = 6 × 10−13) to be used as a practical dating tool for very old groundwater. The International Atomic Energy Agency aims to provide this new isotope tool for better groundwater resource management of Member States and developed a field sampling device to collect dissolved gas samples from groundwater and a system to separate and purify trace amounts of krypton from the gas samples for the ATTA analysis. The design, setup and performances of our sampling and purification systems are described here. Our system can produce a high purity aliquot of about 5 μL of krypton from 5 L of air sample (recovery yield of >90%). The samples made by our system were confirmed to be acceptable for the ATTA analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-8043 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Romeo2022110450 Serial 214
Permanent link to this record