toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A. url  openurl
  Title Durability assessment of GFRP rebars in marine environments Type Journal Article
  Year 2022 Publication Construction and Building Materials Abbreviated Journal  
  Volume 329 Issue Pages 127028  
  Keywords Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete  
  Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83  
Permanent link to this record
 

 
Author (down) Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Marinos2022 Serial 82  
Permanent link to this record
 

 
Author (down) Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 81  
Permanent link to this record
 

 
Author (down) Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 85  
Permanent link to this record
 

 
Author (down) Edmunds, W.M.; Shand, P.; Hart, P.; Ward, R.S. url  openurl
  Title The natural (baseline) quality of groundwater: a UK pilot study Type Journal Article
  Year 2003 Publication Science of The Total Environment Abbreviated Journal  
  Volume 310 Issue 1 Pages 25-35  
  Keywords Baseline quality, Groundwater, Hydrogeochemistry, Monitoring, Water Policy  
  Abstract Knowledge of the natural baseline quality of groundwaters is an essential prerequisite for understanding pollution and for imposing regulatory limits. The natural baseline of groundwaters may show a range of concentrations depending on aquifer mineralogy, facies changes, flow paths and residence time. The geochemical controls on natural concentrations are discussed and an approach to defining baseline concentrations using geochemical and statistical tools is proposed. The approach is illustrated using a flowline from the Chalk aquifer in Berkshire, UK where aerobic and anaerobic sections of the aquifer are separately considered. The baseline concentrations for some elements are close to atmospheric values whereas others evolve through time-dependent water–rock interaction. Certain solutes (K, NH4+), often considered contaminants, reach naturally high concentrations due to geochemical controls; transition metal concentrations are generally low, although their concentrations may be modified by redox controls. It is recommended that the baseline approach be incorporated into future management strategies, notably monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ edmunds_natural_2003 Serial 166  
Permanent link to this record
 

 
Author (down) Dutova, E.M.; Nikitenkov, A.N.; Pokrovskiy, V.D.; Banks, D.; Frengstad, B.S.; Parnachev, V.P. url  openurl
  Title Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation Type Journal Article
  Year 2017 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 178-179 Issue Pages 63-76  
  Keywords Groundwater, Hydrochemical modelling, Mineralisation, Natural uranium, Ore, Solubility  
  Abstract Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software “HydroGeo”, has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO2 pressure (PCO2, open system) of 10−2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M – regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550–1000 mg L−1. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L−1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO3 hydrofacies). The secondary minerals are typically “black” uranium oxides of mixed oxidation state (e.g. U3O7 and U4O9). For rock U content of 5–50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L−1, but with typical concentrations of up to 10 μg L−1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and PCO2 (low PCO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ dutova_modelling_2017 Serial 114  
Permanent link to this record
 

 
Author (down) de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. url  openurl
  Title Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
  Year 2021 Publication Irrigation and Drainage Abbreviated Journal  
  Volume 70 Issue 3 Pages 458-469  
  Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale  
  Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89  
Permanent link to this record
 

 
Author (down) Dąbrowska, J.; Orellana, A.E.M.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A. url  openurl
  Title Between flood and drought: How cities are facing water surplus and scarcity Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 345 Issue Pages 118557  
  Keywords Urban ecosystem management, Urban floods, Urban droughts, Nature-based solutions, Climate change, Urban resilience  
  Abstract Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Dabrowska2023118557 Serial 227  
Permanent link to this record
 

 
Author (down) Custódio, D.A.; Ghisi, E. url  openurl
  Title Impact of residential rainwater harvesting on stormwater runoff Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 326 Issue Pages 116814  
  Keywords Rainwater harvesting, Residential buildings, Stormwater runoff, Floods, Computer simulation  
  Abstract Population increase, climate change and soil impermeability are factors causing floods in large urban centres. Such places also always have water shortage problems. This research aims to evaluate the influence of rainwater harvesting in residential buildings on stormwater in a basin located in southern Brazil (Rio Cachoeira Basin). Urbanised and non-urbanised areas, soil types, curve numbers and time of concentration of each sub-basin were taken into account. Through the HEC-HMS programme, it was possible to calculate hydrographs for the base scenario (when there is no rainwater harvesting). Then, rainwater tanks for the residential buildings were sized using the computer programme Netuno. In the second scenario, there is rainwater harvesting in all residential buildings. Thus, the hydrographs for the second scenario were also calculated. The peak flow reduction potentials for the sub-basins ranged from 2.7% to 14.3%. The highest percentage (14.3%) did not occur in the sub-basin with the most extensive roof area; such highest peak flow reduction occurred in Bom Retiro sub-basin. In Bom Retiro sub-basin, there are more houses than multi-storey residential buildings. Even when considering the full potential of rainwater harvesting for roof areas of all existing buildings in the Rio Cachoeira Basin, the average potential reduction in peak flow was 7.2%. The conclusion is that rainwater tanks in residential buildings have little influence on stormwater runoff, and the stormwater runoff will be less affected when the area of the hydrographic basin is larger. Thus, the reduction in peak flows is insignificant when considering the flooding in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Custodio2023116814 Serial 231  
Permanent link to this record
 

 
Author (down) Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C. url  openurl
  Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
  Year 2020 Publication Applied Geochemistry Abbreviated Journal  
  Volume 123 Issue Pages 104780  
  Keywords Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos  
  Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Cyprus Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: