|   | 
Details
   web
Records
Author (down) Pree, T.A.D.
Title The politics of baselining in the Grants uranium mining district of northwestern New Mexico Type Journal Article
Year 2020 Publication Journal of Environmental Management Abbreviated Journal
Volume 268 Issue Pages 110601
Keywords Critical stakeholder analysis, Environmental cleanup, Environmental monitoring, Mining reclamation/remediation/restoration, Politics of baselining
Abstract During the second half of the twentieth century, northwestern New Mexico served as the primary production site for one of the world’s largest nuclear arsenals. From 1948 to 1970 the “Grants uranium district” provided almost half of the total uranium ore accumulated by the United States federal government for the production of nuclear weapons, in addition to becoming a national source for commercial nuclear energy from the late 1960s to the early 1990s. By the twenty-first century, after a prolonged period of economic decline that began in the late 1970s, all uranium mining and milling in New Mexico had ceased, leaving a legacy of environmental health impacts. What was once referred to as “The Uranium Capital of the World” now encompasses over a thousand abandoned uranium mines and seven massive uranium mill tailings piles, which are associated with airborne and soil contamination as well as groundwater plumes of uranium and other contaminants of concern, in a landscape that has been fractured by underground mine workings and punctured by thousands of exploratory boreholes. This article presents an ethnographic study of the diverse forms of expertise involved in monitoring and managing the mine waste and mill tailings. Drawing from over two years of ethnographic research, I describe the relationship between different stakeholders from local communities, government agencies, and transnational mining corporations as they deliberate about the possibility of cleaning up the former mining district. My thesis is that the possibility of cleaning up the Grants district hinges on the “politics of baselining”—a term I introduce to describe the relationship between stakeholders and their competing environmental models and hydrogeological theories; each accounts for a different geological past prior to mining that can be deemed “natural,” as the background against which to measure the anthropogenic impacts from mining.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ pree_politics_2020 Serial 151
Permanent link to this record
 

 
Author (down) Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D.
Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
Year 2017 Publication Science of The Total Environment Abbreviated Journal
Volume 607-608 Issue Pages 281-293
Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply
Abstract The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132
Permanent link to this record
 

 
Author (down) Pontér, S.; Rodushkin, I.; Engström, E.; Rodushkina, K.; Paulukat, C.; Peinerud, E.; Widerlund, A.
Title Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden Type Journal Article
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 793 Issue Pages 148441
Keywords Isotope ratios, Mine water, Sediments, Uranium
Abstract The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment’s pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased \textgreater20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ponter_early_2021 Serial 154
Permanent link to this record
 

 
Author (down) Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I.
Title Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type Book Chapter
Year 2024 Publication Safeguarding Mountain Social-Ecological Systems Abbreviated Journal
Volume Issue Pages 115-126
Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs
Abstract Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-12-822095-5 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263
Permanent link to this record
 

 
Author (down) Pham, Q.-N.; Nguyen, T.-C.; Ta, T.-T.; Tran, T.-L.
Title Comprehensive approach to sustainable groundwater management in semi-arid Ninh Thuan plain, Vietnam Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 101031
Keywords Climate change, Groundwater, Managed aquifer recharge (MAR), Modeling, Sea level rise, Seawater intrusion, Sustainable groundwater management
Abstract Vietnam is a country with a long coastline and a high population density residing in the coastal plains. The largest dry area in Vietnam, the coastal plain of Ninh Thuan province, always lacks water in the first dry months of the year (Jan., Feb., Mar., and Apr.). Groundwater is an extremely valuable resource for supplies at this time. Therefore, the objective of this study is to establish a comprehensive approach to sustainable groundwater management in this semi-arid region. This approach is not only mitigating the negative impacts of factors such as climate change, sea level rise, and socio-economic development but also suggesting measures for management of aquifer recharge. A groundwater model for a 3-layer system with variable density flow SEAWAT is built to predict the impacts of climate change and sea level rise without a change in groundwater abstraction. This model helps to understand the trend of salt intrusion and lowering groundwater level in the study area. Afterwards, scenarios with different ground water abstraction and groundwater development such as ground dam, infiltration basin have been set up to meet the demands of socio-economic development in the future. Predicted results will show the impacts of the groundwater systems in the area such as groundwater level change, and saltwater intrusion. Controlled groundwater abstraction and some measures of groundwater development such as infiltration basin, underground dam would allow for an increase of up to 50000m3/day in the year 2050 without negative impacts on the aquifer system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ pham_comprehensive_2023 Serial 174
Permanent link to this record