|   | 
Details
   web
Records
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A.
Title Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
Year 2021 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 15 Issue Pages 100657
Keywords Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1
Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N.
Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 17 Issue Pages 100754
Keywords System dynamics, Water resources management, Vensim, Management scenarios
Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A.
Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100988
Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution
Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268
Permanent link to this record
 

 
Author Dahan, O.; Tatarsky, B.; Enzel, Y.; Külls, C.; Seely, M.; Benito, G.
Title Dynamics of flood water infiltration and ground water recharge in hyperarid desert Type Journal Article
Year 2008 Publication Groundwater Abbreviated Journal
Volume 46 Issue 3 Pages 450-461
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Blackwell Publishing Inc Malden, USA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number THL @ christoph.kuells @ Dahan2008dynamics Serial 27
Permanent link to this record
 

 
Author Klock, H.; Külls, C.; Udluft, P.
Title Estimating recharge values using hydrochemical and geological data: a case study from the Type Conference Article
Year 2001 Publication Impact of Human Activity on Groundwater Dynamics: Proceedings of an International Symposium (Symposium S3) Held During the Sixth Scientific Assembly of the International Association of Hydrological Sciences (IAHS) at Maastricht, The Netherlands, from 18 t Abbreviated Journal
Volume Issue 269 Pages 25
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) International Assn of Hydrological Sciences
Notes Approved no
Call Number THL @ christoph.kuells @ Klock2001estimating Serial 60
Permanent link to this record