toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T. url  openurl
  Title Sustainability and virtual water: The lessons of history Type Journal Article
  Year 2022 Publication Geography and Sustainability Abbreviated Journal  
  Volume 3 Issue 4 Pages (up) 358-365  
  Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy  
  Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-6839 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272  
Permanent link to this record
 

 
Author Jaireth, S.; Roach, I.C.; Bastrakov, E.; Liu, S. url  openurl
  Title Basin-related uranium mineral systems in Australia: A review of critical features Type Journal Article
  Year 2016 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 76 Issue Pages (up) 360-394  
  Keywords Australia’s uranium deposits, Calcrete-uranium, Sandstone-hosted uranium, Unconformity-related uranium  
  Abstract This paper reviews critical features of basin-related uranium mineral systems in Australia. These mineral systems include Proterozoic unconformity-related uranium systems formed predominantly from diagenetic fluids expelled from sandstones overlying the unconformity, sandstone-hosted uranium systems formed from the influx of oxidised groundwaters through sandstone aquifers, and calcrete uranium systems formed from oxidised groundwaters flowing through palaeochannel aquifers (sand and calcrete). The review uses the so-called ‘source-pathway-trap’ paradigm to summarise critical features of fertile mineral systems. However, the scheme is expanded to include information on the geological setting, age and relative timing of mineralisation, and preservation of mineral systems. The critical features are also summarised in three separate tables. These features can provide the basis to conduct mineral potential and prospectivity analysis in an area. Such analysis requires identification of mappable signatures of above-mentioned critical features in geological, geophysical and geochemical datasets. The review of fertile basin-related systems shows that these systems require the presence of at least four ingredients: a source of leachable uranium (and vanadium and potassium for calcrete-uranium deposits); suitable hydrological architecture enabling connection between the source and the sink (site of accumulation); physical and chemical sinks or traps; and a post-mineralisation setting favourable for preservation. The review also discusses factors that may control the efficiency of mineral systems, assuming that world-class deposits result from more efficient mineral systems. The review presents a brief discussion of factors which may have controlled the formation of large deposits in the Lake Frome region in South Australia, the Chu-Sarysu and Syrdarya Basins in Kazakhstan and calcrete uranium deposits in the Yilgarn region, Western Australia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jaireth_basin-related_2016 Serial 139  
Permanent link to this record
 

 
Author Haque, N.; Norgate, T. url  openurl
  Title The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia Type Journal Article
  Year 2014 Publication Journal of Cleaner Production Abbreviated Journal  
  Volume 84 Issue Pages (up) 382-390  
  Keywords Copper, GHG emission, Gold, In-situ leaching, LCA, Uranium  
  Abstract In-situ leaching (ISL) is a chemical method for recovering useful minerals and metals directly from underground ore bodies which is also referred to as ‘solution mining’. ISL is commonly used for uranium mining, accounting for about 45% of global production. The main benefits are claimed to be a lower environmental impact in terms of visual disturbances, emissions, lower energy use, cost compared with conventional open-cut or underground mining methods, and potential utilisation of lower grade resources. However, there is a lack of reported studies on the assessment of the environmental impacts of ISL, particularly greenhouse gas (GHG) emissions using life cycle assessment (LCA) methodology. The SimaPro LCA software was used to estimate the GHG footprint of the ISL of uranium, gold and copper. The total GHG emissions were estimated to be 38.0 kg CO2-e/kg U3O8 concentrate (yellowcake), 29 t CO2-e/kg gold, and 4.78 kg CO2-e/kg Cu. The GHG footprint of ISL uranium was significantly lower than that of conventional mining, however, the footprints of copper and gold were not much less compared with conventional mining methods. This is due to the lower ore grade of ISL deposits and recovery compared with high ore grades and recovery of conventional technology. Additionally, the use of large amount of electricity for pumping in case of ISL contributes to this result. The electricity consumed in pumping leaching solutions was by far the greatest contributor to the well-field related activities associated with ISL of uranium, gold and copper. The main strategy to reduce the GHG footprint of ISL mining should be to use electricity derived from low emission sources. In particular, renewable sources such as solar would be suitable for ISL as these operations are typically in remote locations with smaller deposits compared with conventional mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ haque_greenhouse_2014 Serial 208  
Permanent link to this record
 

 
Author Ingham, E.S.; Cook, N.J.; Cliff, J.; Ciobanu, C.L.; Huddleston, A. url  openurl
  Title A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia Type Journal Article
  Year 2014 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 125 Issue Pages (up) 440-465  
  Keywords  
  Abstract The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S=−43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into depositional conditions and sources of both sulfide and uranium mineralization and an improved understanding of pyrite geochemistry can also underpin an effective vector for uranium exploration at Beverley North and other sedimentary systems of the Lake Eyre Basin, as well as in comparable geological environments elsewhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ingham_combined_2014 Serial 188  
Permanent link to this record
 

 
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. url  openurl
  Title Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
  Year 2021 Publication Irrigation and Drainage Abbreviated Journal  
  Volume 70 Issue 3 Pages (up) 458-469  
  Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale  
  Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89  
Permanent link to this record
 

 
Author Stone, A. url  openurl
  Title Recharge investigations above the Stampriet Aquifer in semi-arid Namibia using geochemical methods and environmental tracers; sand, salt and water Type Journal Article
  Year 2012 Publication Quaternary International Abbreviated Journal  
  Volume 279-280 Issue Pages (up) 470-471  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ stone_recharge_2012 Serial 108  
Permanent link to this record
 

 
Author Strandmann, P.A.E.P. von; Reynolds, B.C.; Porcelli, D.; James, R.H.; Calsteren, P. van; Baskaran, M.; Burton, K.W. url  openurl
  Title Assessing continental weathering rates and actinide transport in the Great Artesian Basin Type Journal Article
  Year 2006 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 70 Issue 18, Supplement Pages (up) 497  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ strandmann_assessing_2006 Serial 116  
Permanent link to this record
 

 
Author Love, A.J.; Shand, P.; Karlstrom, K.; Crossey, L.; Rousseau-Gueutin, P.; Priestley, S.; Wholing, D.; Fulton, S.; Keppel, M. url  openurl
  Title Geochemistry and Travertine Dating Provide New Insights into the Hydrogeology of the Great Artesian Basin, South Australia Type Journal Article
  Year 2013 Publication Procedia Earth and Planetary Science Abbreviated Journal  
  Volume 7 Issue Pages (up) 521-524  
  Keywords GAB springs, Great Artesian Basin, Helium isotope data, Uranium series dating  
  Abstract While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flowpaths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neo- tectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-5220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ love_geochemistry_2013 Serial 122  
Permanent link to this record
 

 
Author Zeng, S.; Song, J.; Sun, B.; Wang, F.; Ye, W.; Shen, Y.; Li, H. url  openurl
  Title Seepage characteristics of the leaching solution during in situ leaching of uranium Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 2 Pages (up) 566-574  
  Keywords In situ leaching, Leaching solution viscosity, Seepage characteristics, Seepage pressure, Uranium-bearing sandstone  
  Abstract Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_seepage_2023 Serial 211  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages (up) 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: