toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L. url  openurl
  Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 4 Pages (up) 1476-1484  
  Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis  
  Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192  
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z. url  openurl
  Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
  Year 2023 Publication Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal  
  Volume 15 Issue 10 Pages (up) 2597-2610  
  Keywords Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration  
  Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-7755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198  
Permanent link to this record
 

 
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z. url  openurl
  Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 8 Pages (up) 2773-2784  
  Keywords Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar  
  Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194  
Permanent link to this record
 

 
Author Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. url  doi
openurl 
  Title Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation Type Journal Article
  Year 2020 Publication Nature Communications Abbreviated Journal  
  Volume 11 Issue 1 Pages (up) 3044  
  Keywords  
  Abstract Both seasonal and annual mean precipitation and evaporation influence patterns of water availability impacting society and ecosystems. Existing global climate studies rarely consider such patterns from non-parametric statistical standpoint. Here, we employ a non-parametric analysis framework to analyze seasonal hydroclimatic regimes by classifying global land regions into nine regimes using late 20th century precipitation means and seasonality. These regimes are used to assess implications for water availability due to concomitant changes in mean and seasonal precipitation and evaporation changes using CMIP5 model future climate projections. Out of 9 regimes, 4 show increased precipitation variation, while 5 show decreased evaporation variation coupled with increasing mean precipitation and evaporation. Increases in projected seasonal precipitation variation in already highly variable precipitation regimes gives rise to a pattern of “seasonally variable regimes becoming more variable”. Regimes with low seasonality in precipitation, instead, experience increased wet season precipitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Konapala2020 Serial 284  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 53 Issue 12 Pages (up) 4033-4041  
  Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
 

 
Author Petisco-Ferrero, S.; Idoeta, R.; Rozas, S.; Olondo, C.; Herranz, M. url  openurl
  Title Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages (up) 19470  
  Keywords Detection limit, Nuclear power plant dismantling and decommissioning, Radiological environmental monitoring, Radionuclides in groundwater  
  Abstract Whether a nuclear installation has radiological impact and, in that case, its extension, are the questions behind any environmental analysis of the installation along its operational life. This analysis is based on the detailed establishment of the radiological background of the area. Accordingly, the dismantling and decommissioning process (D&D) of a nuclear power plant starts with a radiological monitoring plan, which includes the radiological characterization of the area and of its surroundings. At the completion of the D&D, unrestricted use for the site will be permitted strictly in accordance with results of the radiological survey within the limits established by the local authorities. Groundwater quality is typically included in any radiological analysis since, among other reasons, a significant part of it is highly likely to end up being extracted for domestic use and hence, human consumption. While there is no regulation containing maximum activity concentration or radionuclide guidance values for water that may be destined for uses other than public consumption, if groundwater is considered a “part” of the land, dose criteria for site release can be applied. Therefore, together with the guidance levels to be established for the different radionuclides expected in the groundwater, the detection limits to be employed when performing routine radio analytical characterization procedures in the laboratory should also be provided. In this paper, we first propose a relation of the potential radionuclides to be analyzed in groundwater, together with their detection limits to be achieved when the determinations are performed in a laboratory, and subsequently, we discuss the most suitable analytical methodologies and resources that would be necessary to undertake radiological characterization plans from a practical point of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ petisco-ferrero_radiological_2023 Serial 133  
Permanent link to this record
 

 
Author Kamruzzaman, M.; Chowdhury, A. url  openurl
  Title Flash flooding considerations aside: Knowledge brokering by the extension and advisory services to adapt a farming system to flash flooding Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages (up) 19662  
  Keywords Flash flooding, Knowledge brokering, Extension and advisory services, Farming system, Climate change  
  Abstract The development of agriculture sector and livelihood in Bangladesh are threatened by various climatic stressors, including flash flooding. Therefore, Extension and advisory services (EAS) need to navigate the knowledge landscape effectively to connect various farm actors and help secure the optimum benefits of knowledge and information for making rational decisions. However, little is known how EAS can perform this task to combat various effects of climate change. This study investigates the means of brokering knowledge by the EAS to help the farming sector adapt to flash flooding. The research was conducted in the north-eastern part of Bangladesh with 73 staff of the Department of Agricultural Extension (DAE), the largest public EAS in Bangladesh. The results showed that DAE primarily dealt with crop production-related information. However, EAS did not navigate knowledge and information about flash flooding, such as weather forecasting and crop-saving-embankments updates, among the farming actors. Moreover, they missed the broad utilization of internet-based-communication channels to rapidly navigate information and knowledge about possible flash flooding and its adaptation strategies. This article provides some policy implications to effectively support the adaptation of farming system to flash flooding through EAS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ KAMRUZZAMAN2023e19662 Serial 235  
Permanent link to this record
 

 
Author Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I. url  openurl
  Title Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages (up) 19668  
  Keywords CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index  
  Abstract Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167  
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S. url  openurl
  Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
  Year 2020 Publication Environmental Advances Abbreviated Journal  
  Volume 2 Issue Pages (up) 100020  
  Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium  
  Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-7657 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127  
Permanent link to this record
 

 
Author Musy, S.; Meyzonnat, G.; Barbecot, F.; Hunkeler, D.; Sültenfuss, J.; Solomon, D.K.; Purtschert, R. url  openurl
  Title In-situ sampling for krypton-85 groundwater dating Type Journal Article
  Year 2021 Publication Journal of Hydrology X Abbreviated Journal  
  Volume 11 Issue Pages (up) 100075  
  Keywords Noble gases, Tracers, Groundwater, Dating, Sampling Methodology  
  Abstract Krypton-85 and other radioactive noble gases are widely used for groundwater dating purposes. 85Kr analysis require large volumes of water to reach the analytical requirements. Conventionally, this water is pumped to the surface to be degassed with a gas extraction system. The large pumping rate may disturb the natural flow field and requires substantial field logistics. Hence, we propose a new in-situ degassing method, in which membrane contactors are used to degas the groundwater directly in the well and gas is collected at the surface. This way, field work is facilitated, groundwater system disturbance is minimized, and the gas sample is collected at a specific depth. We demonstrate the tightness of the system regarding atmospheric air contamination for a collection times of 24 h, which is sufficient for both low-level counting and laser-based counting methods for 85Kr. The minimal borehole diameter is 7.5 cm for the prototype presented in this research but can easily be reduced to smaller diameters. In a case study, we compare the results obtained with the new passive method with those from a conventional packer setup sampling. Additionally, 3H/3He samples were collected for both sampling regimes and the dating results were compared with those from 85Kr. A good agreement between tracer ages is demonstrated and the age stratigraphy is consistent with the expected age distribution for a porous unconfined aquifer. In addition, our study emphasizes the differences between the age information sampled with various methods. In conclusion, we demonstrate that the new in situ quasi-passive method provides a more representative age stratigraphy with depth in most cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Musy2021100075 Serial 215  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: