|   | 
Details
   web
Records
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S.
Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
Year 2020 Publication Environmental Advances Abbreviated Journal
Volume 2 Issue Pages 100020
Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium
Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2666-7657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K.
Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
Year 2020 Publication Water Science and Engineering Abbreviated Journal
Volume 13 Issue 2 Pages 95-105
Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth
Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Akter202095 Serial 247
Permanent link to this record
 

 
Author Uugulu, S.; Wanke, H.
Title Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia Type Journal Article
Year 2020 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume 116 Issue Pages 102844
Keywords Chloride mass balance, Groundwater recharge, Isotopic values, Precipitation gradient
Abstract The quantification of groundwater resources is essential especially in water scarce countries like Namibia. The chloride mass balance (CMB) method and isotopic composition were used in determining groundwater recharge along a precipitation gradient at three sites, namely: Tsumeb (600 mm/a precipitation); Waterberg (450 mm/a precipitation) and Kuzikus/Ebenhaezer (240 mm/a precipitation). Groundwater and rainwater were collected from year 2016–2017. Rainwater was collected monthly while groundwater was collected before, during and after rainy seasons. Rainwater isotopic values for δ18O and δ2H range from −10.70 to 6.10‰ and from −72.7 to 42.1‰ respectively. Groundwater isotopic values for δ18O range from −9.84 to −5.35‰ for Tsumeb; from −10.85 to −8.60‰ for Waterberg and from −8.24 to −1.56‰ for Kuzikus/Ebenhaezer, while that for δ2H range from −65.6 to −46.7‰ for Tsumeb; −69.4 to −61.2‰ for Waterberg and −54.2 to −22.7‰ for Kuzikus/Ebenhaezer. Rainwater scatters along the GMWL. Rainwater collected in January, February and March are more depleted in heavy isotopes than those in November, December, April and May. Waterberg groundwater plots on the GMWL which indicates absence of evaporation. Tsumeb groundwater plots on/close to the GMWL with an exception of groundwater from the karst Lake Otjikoto which is showing evaporation. Groundwater from Kuzikus/Ebenhaezer shows an evaporation effect, probably evaporation occurs during infiltration since it is observed in all sampling seasons. All groundwater from three sites plot in the same area with rainwater depleted in stable isotopic values, which could indicates that recharge only take place during January, February and March. CMB method revealed that Waterberg has the highest recharge rate ranging between 39.1 mm/a and 51.1 mm/a (8.7% – 11.4% of annual precipitation), Tsumeb with rates ranging from 21.1 mm/a to 48.5 mm/a (3.5% – 8.1% of annual precipitation), and lastly Kuzikus/Ebenhaezer from 3.2 mm/a to 17.5 mm/a (1.4% – 7.3% of annual precipitation). High recharge rates in Waterberg could be related to fast infiltration and absence of evaporation as indicated by the isotopic ratios. Differences in recharge rates cannot only be attributed to the precipitation gradient but also to the evaporation rates and the presence of preferential flow paths. Recharge rates estimated for these three sites can be used in managing the savannah aquifers especially at Kuzikus/Ebenhaezer where evaporation effect is observed that one can consider rain harvesting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1474-7065 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ uugulu_estimation_2020 Serial 99
Permanent link to this record
 

 
Author Ammar, F.H.; Deschamps, P.; Chkir, N.; Zouari, K.; Agoune, A.; Hamelin, B.
Title Uranium isotopes as tracers of groundwater evolution in the Complexe Terminal aquifer of southern Tunisia Type Journal Article
Year 2020 Publication Quaternary International Abbreviated Journal
Volume 547 Issue Pages 33-49
Keywords CT southern Tunisia, Holocene, Mixing, Radicarbon, Uranium isotopes, Water-rock interaction
Abstract The Complexe Terminal (CT) multi-layer aquifer is formed by Neogene/Paleogene sand deposits, Upper Senonian (Campanian-Maastrichtian limestones) and Turonian carbonates. The chemical composition and isotopes of carbon and uranium were investigated in groundwater sampled from the main hydrogeological units of the (CT) aquifer in southern Tunisia. We paid special attention to the variability of uranium contents and isotopes ratio (234U/238U) to provide a better understanding of the evolution of the groundwater system. Uranium concentrations range from 1.5 to 19.5 ppb, typical of oxic or mildly reducing conditions in groundwaters. The lowest concentrations are found southeast of the study area, where active recharge is supposed to take place. When looking at the isotope composition, it appears that all the samples, including those from carbonate levels, are in radioactive disequilibrium with significant 234U excess. A clear-cut distinction is observed between Turonian and Senonian carbonate aquifers on the one hand, with 234U/238U activity ratios between 1.1 and 1.8, and the sandy aquifer on the other hand, showing higher ratios from 1.8 to 3.2. The distribution of uranium in this complex aquifer system seems to be in agreement with the lithological variability and are ultimately a function of a number of physical and chemical factors including the uranium content of the hosting geological formation, water-rock interaction and mixing between waters having different isotopic signatures. Significant relationships also appear when comparing the uranium distribution with the major ions composition. It is noticeable that uranium is better correlated with sulfate, calcium and magnesium than with other major ions as chloride or bicarbonate. The 14C activities and δ13C values of DIC cover a wide range of values, from 1.1 pmc to 30.2 pmc and from −3.6‰ to −10.7‰, respectively. 14C model ages estimated by the Fontes and Garnier model are all younger than 22 Ka and indicate that the recharge of CT groundwater occurred mainly during the end of the last Glacial and throughout the Holocene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1040-6182 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ammar_uranium_2020 Serial 119
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 123 Issue Pages 104780
Keywords Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos
Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0883-2927 ISBN Medium
Area Cyprus Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76
Permanent link to this record