|   | 
Details
   web
Records
Author Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A.
Title Durability assessment of GFRP rebars in marine environments Type Journal Article
Year 2022 Publication Construction and Building Materials Abbreviated Journal
Volume 329 Issue Pages 127028
Keywords Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete
Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0950-0618 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83
Permanent link to this record
 

 
Author Romeo, N.; Mabry, J.; Hillegonds, D.; Kainz, G.; Jaklitsch, M.; Matsumoto, T.
Title Developments of a field gas extraction device and krypton purification system for groundwater radio-krypton dating at the IAEA Type Journal Article
Year 2022 Publication Applied Radiation and Isotopes Abbreviated Journal
Volume 189 Issue Pages 110450
Keywords
Abstract The long-lived radio-krypton isotope 81Kr (t1/2 = 2.29 × 105 yr) is an ideal tracer for old groundwater age dating in the range of 105–106 years which goes beyond the reach of radio-carbon (14C) age dating. Analytical breakthrough made over the last two decades in Atom Trap Trace Analysis (ATTA) has enabled the use of this isotope with extremely low abundance (81Kr/Kr = 6 × 10−13) to be used as a practical dating tool for very old groundwater. The International Atomic Energy Agency aims to provide this new isotope tool for better groundwater resource management of Member States and developed a field sampling device to collect dissolved gas samples from groundwater and a system to separate and purify trace amounts of krypton from the gas samples for the ATTA analysis. The design, setup and performances of our sampling and purification systems are described here. Our system can produce a high purity aliquot of about 5 μL of krypton from 5 L of air sample (recovery yield of >90%). The samples made by our system were confirmed to be acceptable for the ATTA analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0969-8043 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Romeo2022110450 Serial 214
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S.
Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal
Volume 428 Issue Pages 131180
Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery
Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z.
Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal
Volume 15 Issue 3 Pages 83-90
Keywords Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond
Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1687-8507 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W.
Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 54 Issue 4 Pages 1175-1184
Keywords Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine
Abstract The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193
Permanent link to this record