toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schwiede, M.; Duijnisveld, W.H.M.; Böttcher, J. url  openurl
  Title Investigation of processes leading to nitrate enrichment in soils in the Kalahari Region, Botswana Type Journal Article
  Year 2005 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 30 Issue 11 Pages 712-716  
  Keywords Nitrate, Arenosol soils, Semi-arid, Kalahari, Cattle, Chloride, Travel time  
  Abstract In Southern Africa elevated nitrate concentrations are observed in mostly uninhabited semi-arid areas. In the Kalahari of Botswana groundwater locally exhibits concentrations up to 600mg/l. It is assumed, that nitrate found in the groundwater originates mainly from nitrogen input and transformations in the soils. Our investigations in the Kalahari between Serowe and Orapa show that cattle raising is an important source for enhanced nitrate concentrations in the soils (Arenosols). But also in termite mounds very high nitrate stocks were found, and under natural vegetation (acacia trees and shrubs) nitrate concentrations were mostly unexpectedly high. This nitrate enrichment in the soils poses a serious threat to the groundwater quality. However, calculated soil water age distributions in the unsaturated zone clearly show that today’s nitrate pollution of the groundwater below the investigation area could originate from natural sources, but cannot be caused by the current land use for cattle raising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Integrated Water Resources Management (IWRM) and the Millennium Development Goals: Managing Water for Peace and Prosperity Approved no  
  Call Number THL @ christoph.kuells @ Schwiede2005712 Serial 276  
Permanent link to this record
 

 
Author Rajfur, M.; Kłos, A.; Wacławek, M. url  openurl
  Title Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water Type Journal Article
  Year 2010 Publication Bioelectrochemistry Abbreviated Journal  
  Volume 80 Issue 1 Pages 81-86  
  Keywords Biomonitoring, Heavy metal ions, Algae sp., Sorption kinetics, Langmuir isotherm  
  Abstract Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions – Mn2+, Cu2+, Zn2+ and Cd2+ – were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30min, with 90-95% of metal ions sorbed in first 10min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1567-5394 ISBN Medium  
  Area Expedition Conference  
  Notes A Selection of Papers presented at the 4th International Workshop on Surface Modification for Chemical and Biochemical Sensing (SMCBS 2009) Approved no  
  Call Number THL @ christoph.kuells @ Rajfur201081 Serial 283  
Permanent link to this record
 

 
Author Hdeib, R.; Aouad, M. url  openurl
  Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
  Year 2023 Publication Water Science and Engineering Abbreviated Journal  
  Volume 16 Issue 3 Pages 219-225  
  Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas  
  Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242  
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K. url  openurl
  Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
  Year 2020 Publication Water Science and Engineering Abbreviated Journal  
  Volume 13 Issue 2 Pages 95-105  
  Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth  
  Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Akter202095 Serial 247  
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z. url  openurl
  Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
  Year 2023 Publication Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal  
  Volume 15 Issue 10 Pages 2597-2610  
  Keywords Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration  
  Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1674-7755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198  
Permanent link to this record
 

 
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T. url  openurl
  Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
  Year 2023 Publication Geoscience Frontiers Abbreviated Journal  
  Volume 14 Issue 2 Pages 101494  
  Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation  
  Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1674-9871 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143  
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z. url  openurl
  Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
  Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal  
  Volume 15 Issue 3 Pages 83-90  
  Keywords Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond  
  Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1687-8507 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128  
Permanent link to this record
 

 
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L. url  openurl
  Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 4 Pages 1476-1484  
  Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis  
  Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W. url  openurl
  Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
  Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 54 Issue 4 Pages 1175-1184  
  Keywords Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine  
  Abstract The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193  
Permanent link to this record
 

 
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z. url  openurl
  Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 8 Pages 2773-2784  
  Keywords Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar  
  Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: