|   | 
Details
   web
Records
Author Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T.
Title Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities Type Journal Article
Year 2023 Publication Journal of Environmental Management Abbreviated Journal
Volume 344 Issue Pages 118260
Keywords Flood, Urban planning, Sustainable cities, LID, Natural-based solutions, Alexandria
Abstract Cities have experienced rapid urbanization-induced harsh climatic events, especially flooding, inevitably resulting in negative and irreversible consequences for urban resilience and endangering residents’ lives. Numerous studies have analyzed the effects of anthropogenic practices (land use changes and urbanization) on flood forecasting. However, non-structural mitigation’s effectiveness, like Nature-Based Solutions (NBS), has yet to receive adequate attention, particularly in the Middle East and North Africa (MENA) region, which have become increasingly significant and indispensable for operationalizing cities efficiently. Therefore, our study investigated the predictive influence of incorporating one of the most common NBS strategies called low-impact development tools (LID) (such as rain gardens, bio-retention cells, green roofs, infiltration trenches, permeable pavement, and vegetative swale) during the urban planning of Alexandria, Egypt, which experiences the harshest rainfall annually and includes various urban patterns. City characteristics-dependent 14 LID scenarios were simulated with recurrence intervals ranging from 2 to 100 years using the LID Treatment Train Tool (LID TTT), depending on calibrated data from 2015 to 2020, by the Nash-Sutcliffe efficiency index and deterministic coefficient, and root-mean-square error with values of 0.97, 0.91, and 0.31, respectively. Our findings confirmed the significant effectiveness of combined LID tools on total flood runoff volume reduction by 73.7%, revealing that different urban patterns can be used in flood-prone cities, provided LID tools are considered in city planning besides grey infrastructure to achieve optimal mitigation. These results, which combined multiple disciplines and were not explicitly mentioned in similar studies in developing countries, may assist municipalities’ policymakers in planning flood-resistant, sustainable cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mabrouk2023118260 Serial 232
Permanent link to this record
 

 
Author Baptista, V.S.G.; Coelho, V.H.R.; Bertrand, G.F.; Silva, G.B.L. da; Caicedo, N.O.L.; Montenegro, S.M.G.L.; Stefan, C.; Glass, J.; Heim, R.; Conrad, A.; Almeida, C. das N.
Title Rooftop water harvesting for managed aquifer recharge and flood mitigation in tropical cities: Towards a strategy of co-benefit evaluations in João Pessoa, northeast Brazil Type Journal Article
Year 2023 Publication Journal of Environmental Management Abbreviated Journal
Volume 342 Issue Pages 118034
Keywords Flood control, Groundwater, Injection well, Stormwater management, Urban drainage, Aquifer storage and recovery
Abstract Intense urbanisation in many coastal areas has led to intensification of groundwater consumption, while reducing permeable areas and increasing the frequency and magnitude of flooding. Among the potential strategies to compensate for these adverse effects, which are expected to become worse as a result of climate change, rooftop rainwater harvesting (RWH) in combination with managed aquifer recharge (MAR), may be indicated. This work investigated the performance of different configurations of such a system, tested as a twofold sustainable stormwater and domestic water management tool in a tropical metropole (João Pessoa, Brazil). This area located over a sedimentary aquifer system illustrates the water security challenges of densely urbanised areas in southern cities. To that end, several configurations of rooftop catchments and storage volumes were evaluated, by simulating a MAR-RWH system connected to the regional unconfined aquifer (Barreiras Formation) through a 6″ diameter injection well. Rainfall-runoff-recharge processes and water balances were simulated using monitored high-temporal resolution rainfall data. The results showed that catchments ranging from 180 to 810 m2, connected to tanks from 0.5 to 30.0 m³, are the optimal solutions in terms of efficient rainwater retention and peak flow reduction. These solutions provided mean annual estimates of aquifer recharge between 57 and 255 m³/yr from 2004 to 2019. The results of this study highlight the opportunity for MAR schemes to reconcile stormwater management and water supply goals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Baptista2023118034 Serial 237
Permanent link to this record
 

 
Author Kurmanseiit, M.B.; Tungatarova, M.S.; Royer, J.-J.; Aizhulov, D.Y.; Shayakhmetov, N.M.; Kaltayev, A.
Title Streamline-based reactive transport modeling of uranium mining during in-situ leaching: Advantages and drawbacks Type Journal Article
Year 2023 Publication Hydrometallurgy Abbreviated Journal
Volume 220 Issue Pages 106107
Keywords 3D modeling, In-situ leaching, Reactive transport model, Streamlines, Uranium recovery
Abstract Reactive transport modeling is known to be computationally intensive when applied to 3D problems. Transforming sequential computing on the computer processor units (CPU) into parallelized computation on the high-performance parallel graphic processor units (GPU) is a classical approach to increasing computational performance. Another complementary approach is to decompose a complex 3D modeling problem into a set of simpler 1D problems using streamline approaches which can be easily parallelized, therefore reducing computation time. This paper investigates solutions to the equations governing dissolution and transport using streamlines coupled with a parallelization approach. In addition, an analytical solution to the dissolution and transfer equations of uranium describing the In-Situ Leaching (ISL) mining recovery is found using an approximation series to the 2nd order. The analytical solution is compared to the 1D numerical resolution along the streamlines and to the 3D simulation results superimposed on the streamline. Both approaches give similar results with a relative error of \textless2 % (2%). The proposed methodology is then applied to a case study in which the classical 3D resolution is compared to the newly suggested streamline solution, demonstrating that the streamline approach increases computational performances by a factor ranging from hundred to thousand depending on the complexity of the grid-block model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kurmanseiit_streamline-based_2023 Serial 190
Permanent link to this record
 

 
Author Shayakhmetov, N.M.; Alibayeva, K.A.; Kaltayev, A.; Panfilov, I.
Title Enhancing uranium in-situ leaching efficiency through the well reverse technique: A study of the effects of reversal time on production efficiency and cost Type Journal Article
Year 2023 Publication Hydrometallurgy Abbreviated Journal
Volume 219 Issue Pages 106086
Keywords Economic evaluation, Hydrodynamic enhancement of mineral production, In-situ leaching, Mineral recovery, Optimal reversal time, Well reversing technique
Abstract In this study, the application of the Well Reversal Technique (WRT) and the impact of reversal time on the efficiency of uranium mining via In-Situ Leaching (ISL) were investigated. A prevalent issue in ISL mineral extraction is the formation of stagnant zones caused by limited access of the lixiviant, which leads to increased operating expenditures. The WRT, which involves altering the function of some wells from injection to production or vice versa, is a potential solution to this problem. The efficiency of WRT is heavily dependent on the well pattern and reversal time. Two commonly used well patterns in ISL are the 9-spot (row arrangement) and 7-spot (hexagonal arrangement). The objective of this study was to determine the optimal reversal time for a 9-spot well pattern through mathematical modeling of hydrodynamic and physico-chemical processes and subsequent economic assessment. A mathematical model of uranium extraction processes was developed using the principles of mass conservation, Darcy’s, and mass action laws. The results obtained for a 9-spot well pattern without reversal, with two reversal options, and a 7-spot scheme were analyzed comparatively. The 7-spot scheme without reversal was found to be the most effective of the options examined. The application of WRT on a 9-spot well pattern allows to enhance production efficiency to a level comparable to that of a 7-spot well pattern. Additionally, the effect of reversal time on recovery was studied based on two well reversal options. The results from calculation revealed that the optimal scenario was when the well reversal is conducted immediately after the time point at which the average concentration of the pregnant solution in the production wells reaches its peak value. The overall efficiency of WRT application was determined through economic calculations of capital (CAPEX) and operating (OPEX) expenditures. Based on economic calculations, it was determined that the utilization of WRT results in a 3–18% increase in mineral production efficiency for a 9-point scheme, depending on the chosen reversal method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ shayakhmetov_enhancing_2023 Serial 203
Permanent link to this record
 

 
Author Timsina, J.; Weerahewa, J.
Title Restoring ancient irrigation systems for sustainable agro-ecosystems development: Reflections on the special issue Type Journal Article
Year 2023 Publication Agricultural Systems Abbreviated Journal
Volume 209 Issue Pages 103668
Keywords Ancient irrigation systems, Degradation, Sustainability, Sri Lanka
Abstract Humans have relied on agriculture to feed their communities for thousands of years. Irrigation is practiced in many different forms over the years in countries all over the world. Although modern irrigation systems have been developed, and are in use in many countries, ancient irrigation systems (AISs) have also played a major role in sustaining food production, especially in smallholder farming in least developed and developing countries. The editorial team of Agricultural Systems put out a call for a special issue on restoring AISs for sustainable agro-ecosystems development to capture ancient marvels of traditional irrigation technology across the world. The objectives of this special issue were to: (i) understand and analyse the hydrological and socio-economic networks anchored by AISs; (ii) explain the nature and sustainability of management of these systems in relation to local agro-ecosystems; (iii) analyse the implications of the AISs for land, soil and water quality, and agro-ecosystem services; (iv) qualitative and quantitative analysis of AISs, including bio-physical and bio-economic modelling of these systems; and (v) assess the feasibility of alternative technological, institutional and management strategies to enhance the productivity, profitability, and environmental sustainability of the systems. The overall goal of the special issue was to develop a useful repository for this information as well as to use the journal’s international reach to share this information with the agricultural systems research community and journal readership. This paper provides reflections of papers published in the special issue. The special issue resulted in twelve high quality original research articles and one review article from Asia, Africa and Europe. The findings from various papers revealed that the AISs have been degraded due to human interventions or the anthropogenic activities across the world. Various papers emphasized that as a corrective measure, there is a need for developing and implementing rehabilitation projects in these systems. Authors identified that appropriate policy interventions by the relevant authorities would be a major step towards such rehabilitation process. However, resetting the ecosystem structure of the AISs strictly towards their historical manifestation is neither required nor feasible in the present context as it would contradict the expectations of stakeholders from these systems. The knowledge generated through the special issue provides evidence-based information on various aspects of AISs. It helps aware governments, private sectors and development agencies for improved policy planning and decision making and for prioritizing the restoration, rehabilitation, and management of various AISs around the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0308-521x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Timsina2023103668 Serial 255
Permanent link to this record