toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pham, H.C.; Alila, Y. url  openurl
  Title Science of forests and floods: The quantum leap forward needed, literally and metaphorically Type Journal Article
  Year 2024 Publication Science of The Total Environment Abbreviated Journal  
  Volume 912 Issue Pages 169646  
  Keywords Hydrological causality, Extreme value analyses, Land use impact, Peakflows, Extreme events epistemology, Experimental design  
  Abstract A century of research has generated considerable disagreement on the effect of forests on floods. Here we call for a causal inference framework to advance the science and management of the effect of any forest or its removal on flood severity and frequency. The causes of floods are multiple and chancy and, hence, can only be investigated via a probabilistic approach. We use the stochastic hydrology literature to infer a blueprint framework which could guide future research on the understanding and prediction of the effects of forests on floods in environments where rain is the dominant form of precipitation. Drawing parallels from other disciplines, we show that the introduction of probability in forest hydrology could stimulate a gestalt switch in the science of forests and floods. In light of increasing flood risk caused by climate change, this probabilistic framework can help policymakers develop robust forest and water management plans based on a defensible and clear understanding of floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Pham2024169646 Serial 244  
Permanent link to this record
 

 
Author Stavi, I.; Eldad, S.; Xu, C.; Xu, Z.; Gusarov, Y.; Haiman, M.; Argaman, E. url  openurl
  Title Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev Type Journal Article
  Year 2024 Publication Catena Abbreviated Journal  
  Volume 234 Issue Pages 107588  
  Keywords Geo-archaeology, Hydrological connectivity, Hydrological modelling, Runoff harvesting, Soil and water conservation, Watershed management  
  Abstract Ancient stone terrace walls aimed at harvesting water runoff and facilitating crop production are widespread across the drylands of the Middle East and beyond. In addition to retaining the scarce water resource, the terrace walls also conserve soil and thicken its profile along ephemeral stream channels (wadis) by decreasing fluvial connectivity and mitigating erosional processes. In this study, we created hydrological models for three wadis with ancient stone terrace walls in the arid northern Negev of Israel, where the predominant geophyte species is Asphodelus ramosus L. A two-dimensional (2D) rain-on-grid (RoG) approach with a resolution of 2 m was used to simulate the rain events with return periods of 10, 20, 50, and 99 % (10-y, 5-y, 2-y, and yearly, respectively) based on the Intensity-Duration-Frequency rain curves for the region. To evaluate the effect of stone terrace walls on fluvial hydrology and geomorphology, the ground level was artificially elevated by 20 cm at the wall locations in a digital terrain model (DTM), using the built-in HEC-RAS 2D terrain modification tool. Our results showed that the terraced wadis have a high capacity to mitigate runoff loss, but a lesser capacity to delay the peak flow. Yet, for all rainstorm return periods, peak flow mitigation was positively related to the number of terrace walls along the stream channel. Field surveys in two of the studied wadis demonstrated that the A. ramosus clones were found in proximity to the stone terrace walls, presumably due to the greater soil–water content there. The results thus suggest that the terrace walls provide improved habitat conditions for these geophytes, supporting their growth and regulating their distribution along the wadi beds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0341-8162 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Stavi2024107588 Serial 229  
Permanent link to this record
 

 
Author Hubbard, B.E.; Gallegos, T.J.; Stengel, V.; Hoefen, T.M.; Kokaly, R.F.; Elliott, B. url  openurl
  Title Hyperspectral (VNIR-SWIR) analysis of roll front uranium host rocks and industrial minerals from Karnes and Live Oak Counties, Texas Coastal Plain Type Journal Article
  Year 2024 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 257 Issue Pages 107370  
  Keywords Critical minerals, Hyperspectral, Industrial minerals, Mine waste, Texas coastal plain, Uranium  
  Abstract VNIR-SWIR (400–2500 nm) reflectance measurements were made on the surfaces of various cores, cuttings and sample splits of sedimentary rocks from the Tertiary Jackson Group, and Catahoula, Oakville and Goliad Formations. These rocks vary in composition and texture from mudstone and claystone to sandstone and are known host rocks for roll front uranium occurrences in Karnes and Live Oak Counties, Texas. Spectral reflectance profiles, 569 in total, were reduced to 125 representative spectral signatures, which were analyzed using the U.S. Geological Survey’s (USGS) Material Identification and Characterization Algorithm (MICA). MICA uses an automated continuum-removal procedure together with a least-squares linear regression to determine the fit of observed sample spectral absorption features to those of reference mineral standards in a spectral library. The reference minerals include various clay, mica, carbonate, ferric and ferrous iron minerals and their mixtures. In addition, absorption feature band-depth analysis was done to identify rock surfaces exhibiting absorption features related to uranium and zeolite minerals, which were not included in the command files used to execute MICA. Rocks from each of the four geologic units produced broadly similar spectral signatures as a result of comparable mineral compositions, but there were some notable differences. For example, Ca- and Na-montmorillonite was matched most frequently to the spectral absorption features in 2-μm (∼2000–2500 nm) wavelengths, while goethite occurred often at 1-μm (∼400–1000 nm) wavelengths. The latter is related to limonitic iron-staining in and around oxidized zones of the uranium roll front as described in previous papers. Rocks of the Jackson Group differed from those of the Catahoula, Oakville and Goliad units in that the former exhibited spectral features we interpret as being due to the presence of lignite-bearing mudstone layers. Goliad rocks exhibit spectral features related to dolomite, gypsum, anhydrite, and an unidentified green clay mineral that is possibly glauconite. Jackson Group rocks also exhibit weak but well-resolved absorption features at 964 and 1157 nm related to either or both zeolite minerals clinoptilolite and heulandite. These zeolite minerals and a few spectra exhibiting hydrous silica absorption features are indicative of alteration of volcanic glass in tuffaceous mudstone and claystone layers. A few sample spectra exhibited strong absorption features at around 1135 nm related to the uranium mineral coffinite. Both the 1135 nm coffinite and 1157 nm zeolite absorption features overlap somewhat, potentially making them difficult to distinguish without additional hyperspectral field, laboratory or remote sensing data. The results of this study were compared to mixtures of minerals described for ore, gangue and alteration minerals in deposit models for sandstone-hosted uranium, sedimentary bentonite and sedimentary zeolite. Use of these spectra can help facilitate mapping of both waste materials from the legacy mining of the above commodities, as well as future exploration and resource assessment activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hubbard_hyperspectral_2024 Serial 178  
Permanent link to this record
 

 
Author Marteleto, T. de P.; Abreu, A.E.S. de; Barbosa, M.B.; Yoshinaga-Pereira, S.; Bertolo, R.A.; Enzweiler, J. url  openurl
  Title Groundwater apparent ages and isotopic composition in Crystalline, Diabase and Tubarão aquifers contact area in Campinas, Southeastern Brazil Type Journal Article
  Year 2024 Publication Journal of South American Earth Sciences Abbreviated Journal  
  Volume 135 Issue Pages 104783  
  Keywords Fractured aquifer, Groundwater mixing, Isotopes, Water management  
  Abstract This study refines the hydrogeological conceptual model of an area with three interconnected aquifers, namely the Crystalline Aquifer System (CAS – igneous and metamorphic rocks), which is in contact with the Tubarão Aquifer System (TAS – sedimentary rocks) and the Diabase Aquifer System (DAS – diabase rocks). The detailed investigation involved geophysical logging and hydraulic and hydrodynamic characterization with straddle packers in a local tubular well, in which groundwater presents high uranium concentrations. Hydrogeochemical and isotope (δ2H, δ18O, 3H, δ13C, 14C) analysis in this well and in other three neighboring wells, with lower U concentrations, showed that ancient and modern waters (3H from <0.8 to 1.12 TU, 14C from 69.43 to 78.72 pMC) mix within the aquifer. During groundwater pumping, vertical fractures in the diabase aquifer possibly induce water mixing and recharge of the deeper levels of the aquifers from shallow layers. The high [U] are related to ancient waters from a confined aquifer hosted in CAS that reaches the wells through hydraulically active fractures located deeper than 159 m depth. Groundwater apparent ages do not increase systematically with depth, revealing a complex circulation model for CAS. The results obtained from the other wells, which are all located on drainage lineaments, reveal that one extracts modern water from DAS and TAS, another one extracts modern and ancient water from DAS and CAS, and the third extracts only ancient water from CAS, confirming the complexity of the local hydrogeology. Regarding regional groundwater management, the study revealed the need to characterize the sources of groundwater in each well, in order to protect modern waters from anthropogenic contamination and to protect ancient groundwater from overexploitation, as CAS hosts groundwaters recharged thousands of years ago or more.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0895-9811 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Depaulamarteleto2024104783 Serial 221  
Permanent link to this record
 

 
Author Singh, A.; Patel, S.; Bhadani, V.; Kumar, V.; Gaurav, K. url  openurl
  Title AutoML-GWL: Automated machine learning model for the prediction of groundwater level Type Journal Article
  Year 2024 Publication Engineering Applications of Artificial Intelligence Abbreviated Journal  
  Volume 127 Issue Pages 107405  
  Keywords AutoML, Bayesian optimisation, Groundwater, Machine learning  
  Abstract Predicting groundwater levels is pivotal in curbing overexploitation and ensuring effective water resource governance. However, groundwater level prediction is intricate, driven by dynamic nonlinear factors. To comprehend the dynamic interaction among these drivers, leveraging machine learning models can provide valuable insights. The drastic increase in computational capabilities has catalysed a substantial surge in the utilisation of machine learning-based solutions for effective groundwater management. The performance of these models highly depends on the selection of hyperparameters. The optimisation of hyperparameters is a complex process that often requires application-specific expertise for a skillful prediction. To mitigate the challenge posed by hyperparameter tuning’s problem-specific nature, we present an innovative approach by introducing the automated machine learning (AutoML-GWL) framework. This framework is specifically designed for precise groundwater level mapping. It seamlessly integrates the selection of best machine learning model and adeptly fine-tunes its hyperparameters by using Bayesian optimisation. We used long time series (1997-2018) data of precipitation, temperature, evaporation, soil type, relative humidity, and lag of groundwater level as input features to train the AutoML-GWL model while considering the influence of Land Use Land Cover (LULC) as a contextual factor. Among these input features, the lag of groundwater level emerged as the most relevant input feature. Once the model is trained, it performs well over the unseen data with a strong correlation of coefficient (R = 0.90), low root mean square error (RMSE = 1.22), and minimal bias = 0.23. Further, we compared the performance of the proposed AutoML-GWL with sixteen benchmark algorithms comprising baseline and novel algorithms. The AutoML-GWL outperforms all the benchmark algorithms. Furthermore, the proposed algorithm ranked first in Friedman’s statistical test, confirming its reliability. Moreover, we conducted a spatial distribution and uncertainty analysis for the proposed algorithm. The outcomes of this analysis affirmed that the AutoML-GWL can effectively manage data with spatial variations and demonstrates remarkable stability when faced with small uncertainties in the input parameters. This study holds significant promise in revolutionising groundwater management practices by establishing an automated framework for simulating groundwater levels for sustainable water resource management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0952-1976 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ singh_automl-gwl_2024 Serial 168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: