|   | 
Details
   web
Records
Author Veerasamy, N.; Kasar, S.; Murugan, R.; Inoue, K.; Natarajan, T.; Ramola, R.C.; Fukushi, M.; Sahoo, S.K.
Title 234U/238U disequilibrium and 235U/238U ratios measured using MC-ICP-MS in natural high background radiation area soils to understand the fate of uranium Type Journal Article
Year 2023 Publication Chemosphere Abbreviated Journal
Volume 323 Issue Pages 138217
Keywords HBRA, MC-ICP-MS, Monazites, U/U, Uranium
Abstract The Chhatrapur-Gopalpur coastal area in Odisha, India is a well-known natural high background radiation (HBRA) area due to the abundance of monazite (a thorium bearing radioactive mineral) in beach sands and soils. Recent studies on Chhatrapur-Gopalpur HBRA groundwater have reported high concentrations of uranium and its decay products. Therefore, the soils of the Chhatrapur-Gopalpur HBRA are reasonably suspected as the sources of these high uranium concentrations in groundwater. In this report, first the uranium concentrations in soil samples were measured using inductively coupled plasma mass spectrometry (ICP-MS) and they were found to range from 0.61 ± 0.01 to 38.59 ± 0.16 mg kg−1. Next, the 234U/238U and 235U/238U isotope ratios were measured to establish a baseline for the first time in Chhatrapur-Gopalpur HBRA soil. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was used for measurement of these isotope ratios. The 235U/238U ratio was observed to be the normal terrestrial value. The 234U/238U activity ratio, was calculated to understand the secular equilibrium between 234U and 238U in soil and it varied from 0.959 to 1.070. To understand the dynamics of uranium in HBRA soil, physico-chemical characteristics of soil were correlated with uranium isotope ratios and this correlation of 234U/238U activity ratio indicated the leaching of 234U from Odisha HBRA soil.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ veerasamy_234u238u_2023 Serial 149
Permanent link to this record
 

 
Author Kumar, V.; Setia, R.; Pandita, S.; Singh, S.; Mitran, T.
Title Assessment of U and As in groundwater of India: A meta-analysis Type Journal Article
Year 2022 Publication Chemosphere Abbreviated Journal
Volume 303 Issue Pages 135199
Keywords Arsenic, Geology, Groundwater, Health risk, Soil texture, Uranium
Abstract More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) \textgreater North Zone (37.7 μg/L) \textgreater South Zone (13.5 μg/L)\textgreater Central Zone (7.4 μg/L) \textgreater East Zone (5.7 μg/L) \textgreaterSoutheast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)\textgreaterCentral Zone (260.4 μg/L)\textgreaterNorth Zone (67.7 μg/L)\textgreaterEast Zone (60.3 μg/L)\textgreaterNorth-east zone (9.78 μg/L)\textgreaterWest zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kumar_assessment_2022 Serial 161
Permanent link to this record
 

 
Author Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R.
Title Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching Type Journal Article
Year 2011 Publication Chemosphere Abbreviated Journal
Volume 82 Issue 8 Pages 1178-1184
Keywords Acid mine water, Contaminant removal, Surface stabilizing shell, Water treatment, Zero-valent iron nanoparticles
Abstract Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation–reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ klimkova_zero-valent_2011 Serial 196
Permanent link to this record
 

 
Author Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D.
Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
Year 2017 Publication Science of The Total Environment Abbreviated Journal
Volume 607-608 Issue Pages 281-293
Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply
Abstract The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L.
Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 861 Issue Pages 160636
Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium
Abstract Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138
Permanent link to this record
 

 
Author Liesch, T.; Hinrichsen, S.; Goldscheider, N.
Title Uranium in groundwater — Fertilizers versus geogenic sources Type Journal Article
Year 2015 Publication Science of The Total Environment Abbreviated Journal
Volume 536 Issue Pages 981-995
Keywords Drinking water, Fertilizer, Geogenic background, Groundwater, Uranium
Abstract Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liesch_uranium_2015 Serial 145
Permanent link to this record
 

 
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K.
Title Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 775 Issue Pages 145787
Keywords Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium
Abstract Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146
Permanent link to this record
 

 
Author Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomão, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P.
Title Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes Type Journal Article
Year 2022 Publication Science of The Total Environment Abbreviated Journal
Volume 807 Issue Pages 151753
Keywords Agrochemicals, Geogenic contamination, Punjab, Salinity, Shallow aquifer, Uranium enrichment
Abstract Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (\textless60 m) are more contaminated with U than from deeper depths (\textgreater60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3−, NO3− Cl−, and F− in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2− and CaUO2(CO3)3−, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 μg.L−1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F− (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_meta-analysis_2022 Serial 150
Permanent link to this record
 

 
Author Pontér, S.; Rodushkin, I.; Engström, E.; Rodushkina, K.; Paulukat, C.; Peinerud, E.; Widerlund, A.
Title Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden Type Journal Article
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 793 Issue Pages 148441
Keywords Isotope ratios, Mine water, Sediments, Uranium
Abstract The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment’s pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased \textgreater20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ponter_early_2021 Serial 154
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L.
Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 865 Issue Pages 161033
Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining
Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155
Permanent link to this record