toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, J.; Pang, Z.; Liu, Y.; Hu, S.; Jiang, W.; Tian, L.; Yang, G.; Jiang, Y.; Jiao, X.; Tian, J. url  openurl
  Title Changes in groundwater dynamics and geochemical evolution induced by drainage reorganization: Evidence from 81Kr and 36Cl dating of geothermal water in the Weihe Basin of China Type Journal Article
  Year 2023 Publication Earth and Planetary Science Letters Abbreviated Journal  
  Volume 623 Issue (up) Pages 118425  
  Keywords Kr dating, Cl dating, Geothermal water, Groundwater dynamics, Weihe basin  
  Abstract 81Kr and 36Cl can both be used to date groundwater beyond the dating range of 14C. 81Kr usually provides reliable groundwater ages because it has uniform initial distribution and negligible subsurface generation, while 36Cl is commonly influenced by subsurface sources or “dead” chloride dissolution. Therefore, the combined use of 81Kr and 36Cl could provide clues on the evolution history of groundwater. In the present study, we performed 36Cl and 81Kr dating of geothermal water in Weihe Basin of China and interpreted the possible cause of disagreement. Two distinct water masses were identified with distinctive isotopic signals: groundwater with significant δ18O shifts (up to −2.0‰), dissolved dead Cl and ages < 1.0 Ma (Cluster A), and older water with little δ18O shifts, negligible dissolved Cl and ages >1.0 Ma (Cluster B). The results confirm the eastward flow path of Cluster B to the Ancient Sanmen Lake with an increasing trend of Cl concentration and age. Modern recharge from the mountains flows to the basin center with intense interaction between water and carbonate under respective reservoir temperatures (100 ∼ 130 °C). These waters flow through the saline stratum emerging from the spillover of the Ancient Sanmen Lake, resulting in higher dead Cl dissolution. A significant linear relationship is observed with the older end-member of ∼1.3Ma under the topographically-driven faster circulation effect. 81Kr ages seem to support the hypothesis that the birth of the modern Yellow River was at about 1.0–1.3 Ma. We inferred the drainage reorganization from the Ancient Sanmen Lake to the modern Yellow River since the Mid-Pleistocene Transition induced the change in groundwater dynamics as well as its chemical evolution. The excavation of the Ancient Sanmen Lake and the accentuated incision of the Weihe River induced groundwater gradient, and therefore the recharge from precipitation from both slopes of the Qinling Mountains in the south and the Beishan Mountains in the north. Our results highlight the effects of dead Cl on 36Cl dating and demonstrate the significant impact of catchment reorganization on groundwater dynamics and its chemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Li2023118425 Serial 212  
Permanent link to this record
 

 
Author Musy, S.; Purtschert, R. url  openurl
  Title Reviewing 39Ar and 37Ar underground production in shallow depths with implications for groundwater dating Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 884 Issue (up) Pages 163868  
  Keywords Subsurface production, Argon-39, Argon-37, Muons, Isotope hydrology, Tracers  
  Abstract Argon-37 (37Ar) and Argon-39 (39Ar) are used for groundwater dating on timescales from weeks to centuries. For both isotopes, the quantification of underground sources is essential to accurately infer water residence times from sampled dissolved activities. Subsurface production resulting from interactions with neutrons from the natural radioactivity in rocks and with primary cosmogenic neutrons has been known for a long time. More recently, the capture of slow negative muons and reactions with muon-induced neutrons were documented for 39Ar subsurface production in the context of underground particle detectors (e.g. for Dark Matter research). However, the contribution from these particles was never considered for groundwater dating applications. Here, we reevaluate the importance of all potential depth-related production channels at depth ranges relevant for 39Ar groundwater dating [0 − 200 meters below the surface (m.b.s)]. The production of radioargon by muon-induced processes is considered in this depth range for the first time. The uncertainty on the total depth-dependent production rate is estimated with Monte Carlo simulations assuming a uniform distribution of the parameter uncertainties. This work aims to provide a comprehensive framework for interpreting 39Ar activities in terms of groundwater residence times and for exposure age dating of rocks. The production of 37Ar is also addressed since this isotope is relevant as a proxy for 39Ar production, for the timing of river-groundwater exchanges, and in the context of on-site inspections (OSI) within the verification framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In this perspective, we provide an interactive web-based application for the calculation of 37Ar and 39Ar production rates in rocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Musy2023163868 Serial 217  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue (up) Pages 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Bresinsky, L.; Kordilla, J.; Hector, T.; Engelhardt, I.; Livshitz, Y.; Sauter, M. url  openurl
  Title Managing climate change impacts on the Western Mountain Aquifer: Implications for Mediterranean karst groundwater resources Type Journal Article
  Year 2023 Publication Journal of Hydrology X Abbreviated Journal  
  Volume 20 Issue (up) Pages 100153  
  Keywords Groundwater recharge, Storage, Hydrogeological droughts, Climate change effects, Groundwater management, Mitigation of climate change effects  
  Abstract Many studies highlight the decrease in precipitation due to climate change in the Mediterranean region, making it a prominent hotspot. This study examines the combined impacts of climate change and three groundwater demand scenarios on the water resources of the Western Mountain Aquifer (WMA) in Israel and the West Bank. While commonly used methods for quantifying groundwater recharge and water resources rely on regression models, it is important to acknowledge their limitations when assessing climate change impacts. Regression models and other data-driven approaches are effective within observed variability but may lack predictive power when extrapolated to conditions beyond historical fluctuations. A comprehensive assessment requires distributed process-based numerical models incorporating a broader range of relevant physical flow processes and, ideally, ensemble model projections. In this study, we simulate the dynamics of dual-domain infiltration and precipitation partitioning using a HydroGeoSphere (HGS) model for variably saturated water flow coupled to a soil-epikarst water balance model in the WMA. The model input includes downscaled high-resolution climate projections until 2070 based on the IPCC RCP4.5 scenario. The results reveal a 5% to 10% decrease in long-term average groundwater recharge compared to a 30% reduction in average precipitation. The heterogeneity of karstic flow and increased intensity of individual rainfall events contribute to this mitigated impact on groundwater recharge, underscoring the importance of spatiotemporally resolved climate models with daily precipitation data. However, despite the moderate decrease in recharge, the study highlights the increasing length and severity of consecutive drought years with low recharge values. It emphasizes the need to adjust current management practices to climate change, as freshwater demand is expected to rise during these periods. Additionally, the study examines the emergence of hydrogeological droughts and their propagation from the surface to the groundwater. The results suggest that the 48-month standardized precipitation index (SPI-48) is a suitable indicator for hydrogeological drought emergence due to reduced groundwater recharge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Bresinsky2023100153 Serial 223  
Permanent link to this record
 

 
Author Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication Urban Climate Abbreviated Journal  
  Volume 51 Issue (up) Pages 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: