toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T. url  openurl
  Title Sustainability and virtual water: The lessons of history Type Journal Article
  Year 2022 Publication Geography and Sustainability Abbreviated Journal  
  Volume 3 Issue (up) 4 Pages 358-365  
  Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy  
  Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-6839 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272  
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue (up) 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Marinos2022 Serial 82  
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue (up) 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 81  
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue (up) 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 85  
Permanent link to this record
 

 
Author Martínez-Santos, P.; Martínez-Alfaro, P.E. url  openurl
  Title A priori mapping of historical water-supply galleries based on archive records and sparse material remains. An application to the Amaniel qanat (Madrid, Spain) Type Journal Article
  Year 2014 Publication Journal of Cultural Heritage Abbreviated Journal  
  Volume 15 Issue (up) 6 Pages 656-664  
  Keywords Hydraulic heritage, Qanat, Groundwater, Foggara, Water-supply, Amaniel, Madrid  
  Abstract Engineering heritage refers to a broad variety of items of social, economic, aesthetic or historic relevance, including roads, dams, buildings and supply networks. Due to their utilitarian nature, their heritage value is often overlooked. This occurs even with those infrastructures that have played an essential role in underpinning the daily existence of entire civilizations. Underground water-supply networks provide an excellent example. Although there are exceptions, water networks tend to be functional in design, rather than monumental. Moreover, they present intricate linear layouts that often span several kilometres. This means they are costly to maintain once their operational life is over, and that they are prone to abandonment and destruction. Devising a priori protection strategies is important to preserve these valuable cultural assets. The following pages present a method to map linear structures based on archive records and sparse material remains. The method is illustrated through its application to the Amaniel qanat, a water-supply gallery built in Madrid, Spain, in the early 17th Century. An appraisal of the known remains was carried out first, leading to an inventory of galleries, shafts, shaft caps and deposits. This was followed by a thorough survey of over one thousand handwritten manuscripts, including physical descriptions of the aqueduct, budget accounts or water metering campaigns, among other documents. Known remains and written evidence were matched against original and auxiliary maps to reconstruct the itinerary of the aqueduct. This led to the identification of sectors where it is still possible to find remains in good condition. Thus, a priori mapping is advocated a valuable technique to locate and preserve these remains, as well as to devise non-invasive surveys and establish heritage protection zones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Martinezsantos2014656 Serial 270  
Permanent link to this record
 

 
Author Wilson, G.B.; McNeill, G.W. url  openurl
  Title Noble gas recharge temperatures and the excess air component Type Journal Article
  Year 1997 Publication Applied Geochemistry Abbreviated Journal  
  Volume 12 Issue (up) 6 Pages 747-762  
  Keywords  
  Abstract The calculation of a groundwater recharge temperature based on the dissolved concentrations of Ne, Ar, Kr and Xe requires a correction for noble gas supersaturation due to excess air entrainment. This entrainment is commonly attributed to the recharge process or to air contamination at the wellhead during sample collection. With the exception of some local studies, most work has concentrated on interpretation of the recharge temperature or quantification of the radiogenic content for palaeoclimatic and dating purposes. The magnitude and source of the excess air is not directly relevant to these studies and so is often ignored. In this work, excess air Ne and other data have been calculated from new and published noble gas data sets for several groundwater systems. For younger groundwaters which have been recharged under one broad climatic regime, the amount of air entrainment increases according to lithology in the order granites, sandstones and limestones respectively. A negative correlation between precipitation and excess air entrainment is identified in at least one aquifer, and some of the mechanisms which may influence the entrainment process are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Wilson1997747 Serial 281  
Permanent link to this record
 

 
Author Ola, I.; Drebenstedt, C.; Burgess, R.M.; Mensah, M.; Hoth, N.; Okoroafor, P.; Külls, C. url  doi
openurl 
  Title Assessing petroleum contamination in parts of the Niger Delta based on a sub-catchment delineated field assessment Type Journal Article
  Year 2024 Publication Environmental Monitoring and Assessment Abbreviated Journal  
  Volume 196 Issue (up) 6 Pages 585  
  Keywords  
  Abstract The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region’s strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-2959 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ola2024 Serial 290  
Permanent link to this record
 

 
Author Mahindawansha, A.; Külls, C.; Kraft, P.; Breuer, L. url  doi
openurl 
  Title Investigating unproductive water losses from irrigated agricultural crops in the humid tropics through analyses of stable isotopes of water Type Journal Article
  Year 2020 Publication Hydrology and Earth System Sciences Abbreviated Journal  
  Volume 24 Issue (up) 7 Pages 3627-3642  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number THL @ christoph.kuells @ Mahindawansha2020investigating Serial 14  
Permanent link to this record
 

 
Author Castro, M.C.; Stute, M.; Schlosser, P. url  openurl
  Title Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies Type Journal Article
  Year 2000 Publication Applied Geochemistry Abbreviated Journal  
  Volume 15 Issue (up) 8 Pages 1137-1167  
  Keywords  
  Abstract 4He concentrations in excess of the solubility equilibrium with the atmosphere by up to two to three orders of magnitude are observed in the Carrizo Aquifer in Texas, the Ojo Alamo and Nacimiento aquifers in the San Juan Basin, New Mexico, and the Auob Sandstone Aquifer in Namibia. A simple 4He accumulation model is applied to explain these excess 4He concentrations in terms of both in situ production and a crustal flux across the bottom layer of the aquifer. Results from the model simulations suggest variability in the 4He fluxes, ranging from 6×10−6 cm3 STP cm−2 yr−1 for the Auob Sandstone Aquifer to 3.6×10−7 cm3 STP cm−2 yr−1 for the Carrizo aquifer. For the Ojo Alamo and Nacimiento aquifers an intermediate value of 3×10−6 cm3 STP cm−2 yr−1 was estimated. The contribution of in-situ produced 4He to the measured concentrations was also estimated. This contribution is negligible for the Auob Sandstone Aquifer as compared with both the concentrations measured at the top and bottom of the aquifer for most of the pathway. In the Carrizo aquifer, in-situ produced 4He contributes 27.5% and 15.4%, to the total 4He observed at the top and bottom of the aquifer, respectively. For both aquifers of the San Juan Basin in-situ production almost entirely dominates the 4He concentrations at the top of the aquifer for most of the pathway. In contrast, the internal production is negligible as compared with the measured concentrations at the bottom of these aquifers, reaching, at most, 1.1%. The model simulations require an exponential decrease in the horizontal velocity of the water with increasing recharge distance to reproduce the distribution of 4He in these aquifers. For the Auob Sandstone Aquifer the highest range in the velocity values is obtained (25 to 0.4 m yr−1). The simulations for the Carrizo aquifer and both aquifers located in the San Juan Basin require velocities varying from 4 to 0.1 m yr−1, and from 2 to 0.3 m yr−1, respectively. For each aquifer, average permeability values were also estimated. They are generally in agreement with results obtained from pumping tests, hydrodynamic modeling and previous 14C measurements. On the basis of the results obtained by calibrating the model with the measured 4He concentrations, the mean water residence times were estimated. They agree reasonably well with 14C ages. When applied as chronologies for noble gas temperatures in the same aquifers, the calculated 4He ages allow the identification of three different climate periods similar to those previously identified using 14C ages: (1) the Holocene period (0–10 Ka BP), (2) the Last Glacial Maximum (≈18 Ka BP), and (3) the preceeding period (30–150 Ka BP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ castro_comparison_2000 Serial 109  
Permanent link to this record
 

 
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z. url  openurl
  Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue (up) 8 Pages 2773-2784  
  Keywords Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar  
  Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: