|   | 
Details
   web
Records
Author Dąbrowska, J.; Orellana, A.E.M.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A.
Title Between flood and drought: How cities are facing water surplus and scarcity Type Journal Article
Year 2023 Publication Journal of Environmental Management Abbreviated Journal
Volume 345 Issue Pages 118557
Keywords (down) Urban ecosystem management, Urban floods, Urban droughts, Nature-based solutions, Climate change, Urban resilience
Abstract Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Dabrowska2023118557 Serial 227
Permanent link to this record
 

 
Author Musy, S.; Purtschert, R.
Title Reviewing 39Ar and 37Ar underground production in shallow depths with implications for groundwater dating Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 884 Issue Pages 163868
Keywords (down) Subsurface production, Argon-39, Argon-37, Muons, Isotope hydrology, Tracers
Abstract Argon-37 (37Ar) and Argon-39 (39Ar) are used for groundwater dating on timescales from weeks to centuries. For both isotopes, the quantification of underground sources is essential to accurately infer water residence times from sampled dissolved activities. Subsurface production resulting from interactions with neutrons from the natural radioactivity in rocks and with primary cosmogenic neutrons has been known for a long time. More recently, the capture of slow negative muons and reactions with muon-induced neutrons were documented for 39Ar subsurface production in the context of underground particle detectors (e.g. for Dark Matter research). However, the contribution from these particles was never considered for groundwater dating applications. Here, we reevaluate the importance of all potential depth-related production channels at depth ranges relevant for 39Ar groundwater dating [0 − 200 meters below the surface (m.b.s)]. The production of radioargon by muon-induced processes is considered in this depth range for the first time. The uncertainty on the total depth-dependent production rate is estimated with Monte Carlo simulations assuming a uniform distribution of the parameter uncertainties. This work aims to provide a comprehensive framework for interpreting 39Ar activities in terms of groundwater residence times and for exposure age dating of rocks. The production of 37Ar is also addressed since this isotope is relevant as a proxy for 39Ar production, for the timing of river-groundwater exchanges, and in the context of on-site inspections (OSI) within the verification framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In this perspective, we provide an interactive web-based application for the calculation of 37Ar and 39Ar production rates in rocks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Musy2023163868 Serial 217
Permanent link to this record
 

 
Author Zaeri, A.; Mohammadi, Z.; Rezanezhad, F.
Title Determining the source and mechanism of river salinity: An integrated regional study Type Journal Article
Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal
Volume 47 Issue Pages 101411
Keywords (down) River salinity, Salinization mechanism, Isotope, Halite brine, River sinuosity
Abstract Study region Zohreh River Basin, Southwest Iran Study focus The salinity of Zohreh River sharply increases in three salinity zones (SZs) along the river named SZ1, SZ2 (the focus of this study), and SZ3. Determining the salinity sources and salinization mechanism using an integrated approach including geological, hydrochemical, isotopic, geophysical, river sinuosity and hydrocarbon analysis are the main objectives of this study. The study focuses on the combination of evidence of regional-scale (i.e., river sinuosity and seismic data) and small-scale (i.e., drilling core analysis). New hydrologic insights for the region Among several known sources of river salinity, it was found that the water quality of the Zohreh River is mainly threatened by the salt-bearing Gachsaran Formation and oil-field brine. It is concluded that halite brine and oil-field brine simultaneously cause the salinization in SZ2, and their contributions were delineated to be 95% and 5%, respectively. The lack of reliable geological evidence to support halite dissolution in surficial layers by circulating waters suggests the possibility of a deep source of halite brine in SZ2. The results revealed that deep halite brine of the salt layers of Gachsaran Formation is mainly responsible for the salinization of SZ2. The mechanism of deep brine penetration to the river through the hidden fault failures detected by the combination of river sinuosity analysis and geophysical data for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-5818 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Zaeri2023101411 Serial 251
Permanent link to this record
 

 
Author Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y.
Title Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal
Volume 51 Issue Pages 104175
Keywords (down) Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management
Abstract This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-409x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256
Permanent link to this record
 

 
Author Hdeib, R.; Aouad, M.
Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
Year 2023 Publication Water Science and Engineering Abbreviated Journal
Volume 16 Issue 3 Pages 219-225
Keywords (down) Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas
Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242
Permanent link to this record