toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Qiu, W.; Yang, Y.; Song, J.; Que, W.; Liu, Z.; Weng, H.; Wu, J.; Wu, J. url  openurl
  Title What chemical reaction dominates the CO2 and O2 in-situ uranium leaching?: Insights from a three-dimensional multicomponent reactive transport model at the field scale Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105522  
  Keywords (down) Carbonate minerals, In-situ leaching (ISL) of uranium, Pyrite oxidation, Reactive transport modeling (RTM)  
  Abstract The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2 in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ qiu_what_2023 Serial 207  
Permanent link to this record
 

 
Author Rosen, M.R.; Burow, K.R.; Fram, M.S. url  openurl
  Title Anthropogenic and geologic causes of anomalously high uranium concentrations in groundwater used for drinking water supply in the southeastern San Joaquin Valley, CA Type Journal Article
  Year 2019 Publication Journal of Hydrology Abbreviated Journal  
  Volume 577 Issue Pages 124009  
  Keywords (down) California, Central Valley, Geochemistry, Groundwater San Joaquin Valley, Uranium  
  Abstract Concentrations of uranium (U) \textgreater30 µg/L in groundwater are relatively uncommon in drinking water in the United States but can be of concern in those areas where complex interactions of aquifer materials and anthropogenic alterations of the natural flow regime mobilize U. High concentrations (\textgreater30 µg/L) of U in the southeastern San Joaquin Valley, California, USA, have been detected in 24 percent of 257 domestic, irrigation, and public-supply wells sampled across an approximately 110,000 km2 area. In this study we evaluated mechanisms for mobilization of U in the San Joaquin Valley proposed in previous studies, confirming mobilization by HCO3 and refuting mobilization by NO3 and we refined our understanding of the geologic sources of U to the scale of individual alluvial fans. The location of high concentrations depends on the interactions of geological U sources from fluvial fans that originate in the Sierra Nevada to the east and seepage of irrigation water that contains high concentrations of HCO3 that leaches U from the sediments. In addition, interactions with PO4 from fertilized irrigated fields may sequester U in the aquifer. Principal component analysis of the data demonstrates that HCO3 and ions associated with high total dissolved solids in the aquifer and the percentage of agriculture near the well sampled are associated with high U concentrations. Nitrate concentrations do not appear to control release of U to the aquifer. Age dating of the groundwater and generally increasing U concentrations of the past 25 years in resampled wells where irrigation is prevalent suggests that high U concentrations are associated with younger water, indicating that irrigation of fields over the past 100 years has significantly contributed to increasing concentrations and mobilizing U. In some places, the groundwater is supersaturated with uranyl-containing minerals, as would be expected in roll front deposits. In general, the interaction of natural geological sources high in U, the anthropogenically driven addition of HCO3 and possibly phosphate fertilizer, control the location and concentration of U in each individual fluvial fan, but the addition of nitrate in fertilizer does not appear control the location of high U. These geochemical interactions are complex but can be used to determine controls on anomalously high U in alluvial aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rosen_anthropogenic_2019 Serial 158  
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N. url  openurl
  Title Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
  Year 2019 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 109 Issue Pages 50-78  
  Keywords (down) Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium  
  Abstract The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124  
Permanent link to this record
 

 
Author Heine, F.; Einsiedl, F. url  openurl
  Title Groundwater dating with dissolved organic radiocarbon: A promising approach in carbonate aquifers Type Journal Article
  Year 2021 Publication Applied Geochemistry Abbreviated Journal  
  Volume 125 Issue Pages 104827  
  Keywords (down) C groundwater dating, deep carbonate aquifer, DOC, SPE-PPL  
  Abstract A complete hydrogeological understanding of the deep Upper Jurassic carbonate aquifer in the South German Molasse Basin is essential for the future development of this important drinking water resource and geothermally used system. Water chemistry data, δ13CDIC, 14C of the dissolved inorganic carbon (14CDIC) and stable water isotope (δ18O and δD) measurements have been used to evaluate a promising groundwater dating approach with 14C of dissolved organic carbon (14CDOC). The pre-concentration of dissolved organic matter (DOM) was performed by the easy applicable solid phase extraction (SPE) with a styrene-divinylbenzene copolymer sorbent (PPL). Based on the sampling campaign of seven groundwater wells conducted between 2017 and 2019, it was shown that the groundwater is mainly of Ca–HCO3 type with some evidence of ion exchange between Ca2+ and Na+ at two of the investigated wells. The δD values ranged from −89.4‰ to −70.9‰ while δ18O values varied between −12.5‰ and −9.8‰. The obtained stable water isotope signatures indicated that the groundwater is of meteoric origin and was recharged during warm climate (Holocene), intermediate climate and cold climate (Pleistocene) infiltration conditions. The measured 14CDOC activities varied from 5.7 pmC to 51.1 pmC and the calculated piston-flow water ages (ORAs) ranged from 4200 years to 25,248 years using an initial 14C0DOC of 85 pmC. The calculated ORAs showed a very good correlation to the infiltration temperature-sensitive δ18O values which were affirmed with noble gas infiltration temperatures for two wells after Weise et al. (1991) and were also in good accordance with the atmospheric temperature record of the northern hemisphere from Dokken et al. (2015). The results reflect a consistent hydrogeological picture of the carbonate aquifer, which also supports the applicability of the SPE-PPL method for 14CDOC dating in groundwater with a low DOC content (<1 mg/l). In contrast, 14CDIC activities of 1.4 pmC to 21.3 pmC led to geochemically corrected piston-flow ages between 8057 years and >30,000 years and generally to an overestimation of the apparent water ages. This study gives insights into the promising approach of 14CDOC groundwater dating in carbonate aquifers with low DOC contents and allows future sustainable groundwater resource management of the investigated aquifer system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heine2021104827 Serial 216  
Permanent link to this record
 

 
Author Yabusaki, S.B.; Fang, Y.; Long, P.E.; Resch, C.T.; Peacock, A.D.; Komlos, J.; Jaffe, P.R.; Morrison, S.J.; Dayvault, R.D.; White, D.C.; Anderson, R.T. url  openurl
  Title Uranium removal from groundwater via in situ biostimulation: Field-scale modeling of transport and biological processes Type Journal Article
  Year 2007 Publication Journal of Contaminant Hydrology Abbreviated Journal  
  Volume 93 Issue 1 Pages 216-235  
  Keywords (down) Bioremediation, Biostimulation, Field experiment, Iron, Reactive transport, Sulfate, Uranium  
  Abstract During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ yabusaki_uranium_2007 Serial 156  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: