|   | 
Details
   web
Records
Author Zhang, H.; Gao, J.; Xu, L.; Zhang, X.
Title Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China Type Journal Article
Year 2022 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 251-252 Issue Pages 106982
Keywords (up) Drilling mud, Exemption management, In situ leaching, Radioactivity
Abstract The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit’s grade and conditions, were proposed for in situ leaching drilling projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhang_case_2022 Serial 191
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z.
Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal
Volume 15 Issue 3 Pages 83-90
Keywords (up) Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond
Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-8507 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128
Permanent link to this record
 

 
Author Xiao, L.; Robinson, M.; O’Connor, M.
Title Woodland’s role in natural flood management: Evidence from catchment studies in Britain and Ireland Type Journal Article
Year 2022 Publication Science of The Total Environment Abbreviated Journal
Volume 813 Issue Pages 151877
Keywords (up) Forest harvesting, Streamflow, Natural flood management, Before-after-control-impact, Evidence-based forest impact
Abstract Despite the attention currently given to the potential environmental benefits of large-scale forest planting, there is a shortage of clear observational evidence regarding the effects on river flows, and what there is has often been contradictory or inconclusive. This paper presents three independently conducted paired-catchment forestry studies covering 66 station-years of flow measurements in the UK and Ireland. In each case coniferous evergreen trees were removed from one catchment with minimal soil disturbance while the adjoining control catchment was left unchanged. Trees were removed from 20% – 90% of the three experimental basins. Following woodland removal there was an increase in dry weather baseflow at all sites. Baseflows increased by about 8% after tree removal from a quarter of the Hore basin and by 41% for the near-total cut at Howan. But the changes were more complex for peak flows. Tree harvesting increased the smallest and most frequent peak storm flows, indicating that afforestation would lead to the suppression of such events. This was however restricted to events well below the mean annual flood, indicating that the impact of forests upon the largest and most damaging floods is likely to be limited. Whilst a forest cover can be effective in mitigating small and frequent stormflows it should never be assumed to provide protection against major flood events.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Xiao2022151877 Serial 241
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W.
Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 54 Issue 4 Pages 1175-1184
Keywords (up) Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine
Abstract The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S.
Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal
Volume 428 Issue Pages 131180
Keywords (up) In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery
Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209
Permanent link to this record