toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zaeri, A.; Mohammadi, Z.; Rezanezhad, F. url  openurl
  Title Determining the source and mechanism of river salinity: An integrated regional study Type Journal Article
  Year 2023 Publication (up) Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 47 Issue Pages 101411  
  Keywords River salinity, Salinization mechanism, Isotope, Halite brine, River sinuosity  
  Abstract Study region Zohreh River Basin, Southwest Iran Study focus The salinity of Zohreh River sharply increases in three salinity zones (SZs) along the river named SZ1, SZ2 (the focus of this study), and SZ3. Determining the salinity sources and salinization mechanism using an integrated approach including geological, hydrochemical, isotopic, geophysical, river sinuosity and hydrocarbon analysis are the main objectives of this study. The study focuses on the combination of evidence of regional-scale (i.e., river sinuosity and seismic data) and small-scale (i.e., drilling core analysis). New hydrologic insights for the region Among several known sources of river salinity, it was found that the water quality of the Zohreh River is mainly threatened by the salt-bearing Gachsaran Formation and oil-field brine. It is concluded that halite brine and oil-field brine simultaneously cause the salinization in SZ2, and their contributions were delineated to be 95% and 5%, respectively. The lack of reliable geological evidence to support halite dissolution in surficial layers by circulating waters suggests the possibility of a deep source of halite brine in SZ2. The results revealed that deep halite brine of the salt layers of Gachsaran Formation is mainly responsible for the salinization of SZ2. The mechanism of deep brine penetration to the river through the hidden fault failures detected by the combination of river sinuosity analysis and geophysical data for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zaeri2023101411 Serial 251  
Permanent link to this record
 

 
Author Ollivier, C.C.; Carrière, S.D.; Heath, T.; Olioso, A.; Rabefitia, Z.; Rakoto, H.; Oudin, L.; Satgé, F. url  openurl
  Title Ensemble precipitation estimates based on an assessment of 21 gridded precipitation datasets to improve precipitation estimations across Madagascar Type Journal Article
  Year 2023 Publication (up) Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 47 Issue Pages 101400  
  Keywords Precipitation products, Remote sensing, Ensemble approach, Hydrology, Madagascar  
  Abstract Study region this study focuses on Madagascar. This island is characterized by a great diversity of climate, due to trade winds and the varying topography. This country is also undergoing extreme rainfall events such as droughts and cyclones. Study focus the rain gauge network of Madagascar is limited (about 30 stations). Consequently, we consider relevant satellite-based precipitation datasets to fill gaps in ground-based datasets. We assessed the reliability of 21 satellite-based and reanalysis precipitation products (P-datasets) through a direct comparison with 24 rain gauge station measurements at the monthly time step, using four statistical indicators: Kling-Gupta Efficiency (KGE), Correlation Coefficient (CC), Root Mean Square Error (RMSE), and Bias. Based on this first analysis, we produced a merged dataset based on a weighted average of the 21 products. New hydrological insights for the region based on the KGE and the CC scores, WFDEI (WATCH Forcing Data methodology applied to ERA-Interim), CMORPH-BLD (Climate Prediction Center MORPHing satellite-gauge merged) and MSWEP (Multi-Source Weighted Ensemble Precipitation) are the most accurate for estimating rainfall at the national scale. Additionally, the results reveal a high discrepancy between bio-climatic regions. The merged dataset reveals higher performance than the other products in all situations. These results demonstrate the usefulness of a merging approach in an area with a deficit of rainfall data and a climatic and topographic diversity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ollivier2023101400 Serial 288  
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z. url  openurl
  Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
  Year 2023 Publication (up) Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal  
  Volume 15 Issue 10 Pages 2597-2610  
  Keywords Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration  
  Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-7755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198  
Permanent link to this record
 

 
Author Asare, P.; Atun, F.; Pfeffer, K. url  openurl
  Title Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra Type Journal Article
  Year 2023 Publication (up) Land Use Policy Abbreviated Journal  
  Volume 133 Issue Pages 106865  
  Keywords Naure-Based Solutions, Urban expansion, Urban floods, Urban flood management, Spatial planning, NBS integration  
  Abstract The rapid rate of urban expansion with its associated physical development in recent years conflicts with the urban ecosystem and the services it provides. In most Sub-Saharan African cities, rapid urban expansion often does not conform to existing spatial plans. Physical developments are sometimes carried out in unauthorized areas, contributing to urban floods. The Sub-Saharan African regions’ flood management strategies mainly focus on engineering solutions but have not been fully functional in mitigating urban floods. There is a scarcity of knowledge on how urban flood-related NBS measures can be part of the spatial development in Sub-Saharan African cities for effective flood management. In order to address this gap, this study employed content and text analysis of policy documents and interviews to understand how current spatial and flood mitigation schemes in Accra, Ghana reflect possible NBS applicability and identify possible approaches to integrating NBS into existing planning schemes to prevent urban floods. The study found that Accra’s spatial plans and flood mitigation schemes reflect a possibility of NBS integration. Additionally, the study unveiled techniques for integrating NBS measures and possible implementation barriers and facilitation in the Ghanaian context, which can be linked to combating the challenges that the Ghanaian spatial planning and flood management authorities face. The research, therefore, contributes to knowledge of how NBS can be integrated into spatial planning systems and flood mitigation schemes in Sub-Saharan African regions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Asare2023106865 Serial 236  
Permanent link to this record
 

 
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L. url  openurl
  Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
  Year 2023 Publication (up) Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 4 Pages 1476-1484  
  Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis  
  Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: