toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z. url  openurl
  Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 8 Pages 2773-2784  
  Keywords Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar  
  Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194  
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z. url  openurl
  Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
  Year 2023 Publication Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal  
  Volume 15 Issue 10 Pages 2597-2610  
  Keywords Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration  
  Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1674-7755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198  
Permanent link to this record
 

 
Author Xie, T.; Lian, B.; Chen, C.; Qian, T.; Liu, X.; Shang, Z.; Li, T.; Wang, R.; Wang, Z.; Zhang, A.; Zhu, J. url  openurl
  Title Leaching behaviour and mechanism of U, 226Ra and 210Pb from uranium tailings at different pH conditions Type Journal Article
  Year 2023 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 270 Issue Pages 107300  
  Keywords Leaching experiments, Pb, Ra, U, Uranium tailings  
  Abstract A large number of radionuclides remain in uranium tailings, and U, 226Ra and 210Pb leach out with water chemistry, causing potential radioactive contamination to the surrounding environment. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling, mixed and homogenised, and analysed for mineral and chemical composition, microscopic morphology, U, 226Ra and 210Pb fugacity, static leaching and dynamic leaching of U, 226Ra and 210Pb in uranium tailings at different pH conditions. The variation of U, 226Ra and 210Pb concentrations in the leachate under different pH conditions with time was obtained, and the leaching mechanism was analysed. The results showed that the uranium tailings were dominated by quartz, plagioclase and other minerals, of which SiO2 and Al2O3 accounted for 65.45% and 13.32% respectively, and U, 226Ra and 210Pb were mainly present in the residue form. The results of the static leaching experiments show that pH mainly influences the leaching of U, 226Ra and 210Pb by changing their chemical forms and the particle properties of the tailings, and that the lower the pH the more favourable the leaching. The results of dynamic leaching experiments during the experimental cycle showed that the leaching concentration and cumulative release of U, 226Ra and 210Pb in the leach solution were greater at lower pH conditions than at higher pH conditions, and the leaching of U, 226Ra and 210Pb at different pH conditions was mainly from the water-soluble and exchangeable states. The present research results are of great significance for the environmental risk management and control of radioactive contamination in existing uranium tailings ponds, and are conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ xie_leaching_2023 Serial 200  
Permanent link to this record
 

 
Author Shayakhmetov, N.M.; Alibayeva, K.A.; Kaltayev, A.; Panfilov, I. url  openurl
  Title Enhancing uranium in-situ leaching efficiency through the well reverse technique: A study of the effects of reversal time on production efficiency and cost Type Journal Article
  Year 2023 Publication Hydrometallurgy Abbreviated Journal  
  Volume 219 Issue Pages 106086  
  Keywords Economic evaluation, Hydrodynamic enhancement of mineral production, In-situ leaching, Mineral recovery, Optimal reversal time, Well reversing technique  
  Abstract In this study, the application of the Well Reversal Technique (WRT) and the impact of reversal time on the efficiency of uranium mining via In-Situ Leaching (ISL) were investigated. A prevalent issue in ISL mineral extraction is the formation of stagnant zones caused by limited access of the lixiviant, which leads to increased operating expenditures. The WRT, which involves altering the function of some wells from injection to production or vice versa, is a potential solution to this problem. The efficiency of WRT is heavily dependent on the well pattern and reversal time. Two commonly used well patterns in ISL are the 9-spot (row arrangement) and 7-spot (hexagonal arrangement). The objective of this study was to determine the optimal reversal time for a 9-spot well pattern through mathematical modeling of hydrodynamic and physico-chemical processes and subsequent economic assessment. A mathematical model of uranium extraction processes was developed using the principles of mass conservation, Darcy’s, and mass action laws. The results obtained for a 9-spot well pattern without reversal, with two reversal options, and a 7-spot scheme were analyzed comparatively. The 7-spot scheme without reversal was found to be the most effective of the options examined. The application of WRT on a 9-spot well pattern allows to enhance production efficiency to a level comparable to that of a 7-spot well pattern. Additionally, the effect of reversal time on recovery was studied based on two well reversal options. The results from calculation revealed that the optimal scenario was when the well reversal is conducted immediately after the time point at which the average concentration of the pregnant solution in the production wells reaches its peak value. The overall efficiency of WRT application was determined through economic calculations of capital (CAPEX) and operating (OPEX) expenditures. Based on economic calculations, it was determined that the utilization of WRT results in a 3–18% increase in mineral production efficiency for a 9-point scheme, depending on the chosen reversal method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ shayakhmetov_enhancing_2023 Serial 203  
Permanent link to this record
 

 
Author Qiu, W.; Yang, Y.; Song, J.; Que, W.; Liu, Z.; Weng, H.; Wu, J.; Wu, J. url  openurl
  Title What chemical reaction dominates the CO2 and O2 in-situ uranium leaching?: Insights from a three-dimensional multicomponent reactive transport model at the field scale Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105522  
  Keywords Carbonate minerals, In-situ leaching (ISL) of uranium, Pyrite oxidation, Reactive transport modeling (RTM)  
  Abstract The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2 in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ qiu_what_2023 Serial 207  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: