toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title (up) Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 53 Issue 12 Pages 4033-4041  
  Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
 

 
Author Mathuthu, M.; Uushona, V.; Indongo, V. url  openurl
  Title (up) Radiological safety of groundwater around a uranium mine in Namibia Type Journal Article
  Year 2021 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 122 Issue Pages 102915  
  Keywords Groundwater, ICP-MS, Radiological hazard, Uranium mining  
  Abstract Uranium mining activities produce the main element used in nuclear energy production. However, it can also negatively affect the environment including groundwater by release of residues or effluent containing radioactive elements. The study investigated the concentration and radiological hazard of uranium in groundwater and seepage water from the tailings of a uranium mine in Namibia. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to assess the concentration of uranium in the groundwater and seepage water and the radiological hazards were determined. The radiological hazard indices Radium equivalent activity (Raeq), Absorbed dose (D), Annual Effective Dose equivalent (AEDE), External hazard index (Hex) and Internal hazard index (Hin) were determined and compared to limits recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The calculated average value of D and Hin of groundwater is 108.11nGyh−1 and 1.26, respectively and are above the UNSCEAR values (55 nGyh−1 and 1). Further, the average values of Raeq, AEDE and Hex were below the recommended values. The isotopic ratio of uranium radionuclides in groundwater indicates that the uranium in the sampled groundwater is below 1 suggesting it is not natural uranium present but a possible contamination from the mine seepage. The radiological hazard parameters of the seepage water were above the recommended values and thus pose a radiation risk to human and environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mathuthu_radiological_2021 Serial 160  
Permanent link to this record
 

 
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K. url  openurl
  Title (up) Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 775 Issue Pages 145787  
  Keywords Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium  
  Abstract Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146  
Permanent link to this record
 

 
Author Milena-Pérez, A.; Piñero-García, F.; Benavente, J.; Expósito-Suárez, V.M.; Vacas-Arquero, P.; Ferro-García, M.A. url  openurl
  Title (up) Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes Type Journal Article
  Year 2021 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 227 Issue Pages 106503  
  Keywords 234U/238U, Betic cordillera, Groundwater, Hydrogeochemistry, Uranium natural isotopes  
  Abstract This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ milena-perez_uranium_2021 Serial 112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: