toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Demuth, S.; Külls, C. openurl 
  Title (up) Probability analysis and regional aspects of droughts in southern Germany Type Journal Article
  Year 1997 Publication Sustainability of Water Resources under Increasing Uncertainty Abbreviated Journal  
  Volume Issue 240 Pages 97  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Iahs Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Demuth1997probability Serial 35  
Permanent link to this record
 

 
Author Jroundi, F.; Descostes, M.; Povedano-Priego, C.; Sánchez-Castro, I.; Suvannagan, V.; Grizard, P.; Merroun, M.L. url  openurl
  Title (up) Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal  
  Volume 721 Issue Pages 137758  
  Keywords Bacterial diversity, Bioremediation, In-situ recovery, Natural attenuation, Network analysis, Uranium  
  Abstract A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer’s native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_profiling_2020 Serial 177  
Permanent link to this record
 

 
Author Pastukhov, A.M.; Rychkov, V.N.; Smirnov, A.L.; Skripchenko, S.Y.; Poponin, N.A. url  openurl
  Title (up) Purification of in situ leaching solution for uranium mining by removing solids from suspension Type Journal Article
  Year 2014 Publication Minerals Engineering Abbreviated Journal  
  Volume 55 Issue Pages 1-4  
  Keywords Bag filter, Firm particles, In situ leaching mining, Injection wells, Intake capacity, Purification  
  Abstract This study investigated the process of in situ leaching (ISL) method of uranium mining, and the removal of solid particles from the leaching solution. Investigations were carried out for 4months. The content of firm suspensions in the productive solutions arriving from the well field was up to standard of 3–5mg/l. After keeping in a settler of productive solutions within one hour concentration of suspensions decreases to 2–2.5mg/l. To increase the life of the wells requires more fine purification of the ISL solutions. The best results can be obtained but using filtration. Bag filters were used in experiments carried out at the extraction site. All samples of polypropylene bag filter was produced by the Tamfelt Corporation. The best results were obtained for fabrics S-51M03-L2K4 (pore size 3μm). After three month of trials following indicators of wells work were fixed: on the trial cell decrease in intake capacity did not occur; on the other cells of well field injectability of holes for the same period of time decreased for 15–40%. The results illustrated the high efficiency of this method, which allows injection wells to reach a constant intake capacity, making it possible for technological cells to achieve a constant productivity and balance. Purification of solutions allows to reduce acidulation term of new technological cells from 3–4 to 1.5–2months.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pastukhov_purification_2014 Serial 204  
Permanent link to this record
 

 
Author Hebert, B.; Baron, F.; Robin, V.; Lelievre, K.; Dacheux, N.; Szenknect, S.; Mesbah, A.; Pouradier, A.; Jikibayev, R.; Roy, R.; Beaufort, D. url  openurl
  Title (up) Quantification of coffinite (USiO4) in roll-front uranium deposits using visible to near infrared (Vis-NIR) portable field spectroscopy Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 199 Issue Pages 53-59  
  Keywords Coffinite, Mineral quantification, Near infrared, Ore exploration, Portable field spectroscopy, Roll-front deposits  
  Abstract Coffinite (USiO4) is a common uranium-bearing mineral of roll-front uranium deposits. This mineral can be identified by the visible near infrared (Vis-NIR) portable field spectrometers used in mining exploration. However, due to the low detection limits and associated errors, the quantification of coffinite abundance in the mineralized sandstones or sandy sediments of roll-front uranium deposits using Vis-NIR spectrometry requires a specific methodological development. In this study, the 1135 nm absorption band area is used to quantify the abundance of coffinite. This absorption feature does not interfere with NIR absorption bands of any other minerals present in natural sands or sandstones of uranium roll-front deposits. The correlation between the 1135 nm band area and coffinite content was determined from a series of spectra measured from prepared mineral mixtures. The samples were prepared with a range of weighted amounts of arenitic sands and synthetic coffinite simulating the range of uranium concentration encountered in roll-front uranium deposits. The methodology presented in this study provides the quantification of the coffinite content present in sands between 0.03 wt% to 1 wt% coffinite with a detection limit as low as 0.005 wt%. The integrated area of the 1135 nm band is positively correlated with the coffinite content of the sand in this range, showing that the method is efficient to quantify coffinite concentrations typical of roll-front uranium deposits. The regression equation defined in this study was then used as a reference to predict the amount of natural coffinite in a set of mineralized samples from the Tortkuduk uranium roll-front deposit (South Kazakhstan).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hebert_quantification_2019 Serial 184  
Permanent link to this record
 

 
Author Klock, H.; Külls, C.; Udluft, P. openurl 
  Title (up) Quantification of Groundwater Recharge-Estimating recharge values using hydrochemical and geological data: A case study from the semiarid Kalahari catchment of northern Namibia Type Journal Article
  Year 2001 Publication IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences Abbreviated Journal  
  Volume 269 Issue Pages 25-32  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wallingford [Oxfordshire]: IAHS, 1981- Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Klock2001 Serial 32  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: