toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y. url  openurl
  Title (up) Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
  Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal  
  Volume 51 Issue Pages 104175  
  Keywords Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management  
  Abstract This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-409x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256  
Permanent link to this record
 

 
Author Zeng, S.; Song, J.; Sun, B.; Wang, F.; Ye, W.; Shen, Y.; Li, H. url  openurl
  Title (up) Seepage characteristics of the leaching solution during in situ leaching of uranium Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 2 Pages 566-574  
  Keywords In situ leaching, Leaching solution viscosity, Seepage characteristics, Seepage pressure, Uranium-bearing sandstone  
  Abstract Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_seepage_2023 Serial 211  
Permanent link to this record
 

 
Author Kurmanseiit, M.B.; Tungatarova, M.S.; Royer, J.-J.; Aizhulov, D.Y.; Shayakhmetov, N.M.; Kaltayev, A. url  openurl
  Title (up) Streamline-based reactive transport modeling of uranium mining during in-situ leaching: Advantages and drawbacks Type Journal Article
  Year 2023 Publication Hydrometallurgy Abbreviated Journal  
  Volume 220 Issue Pages 106107  
  Keywords 3D modeling, In-situ leaching, Reactive transport model, Streamlines, Uranium recovery  
  Abstract Reactive transport modeling is known to be computationally intensive when applied to 3D problems. Transforming sequential computing on the computer processor units (CPU) into parallelized computation on the high-performance parallel graphic processor units (GPU) is a classical approach to increasing computational performance. Another complementary approach is to decompose a complex 3D modeling problem into a set of simpler 1D problems using streamline approaches which can be easily parallelized, therefore reducing computation time. This paper investigates solutions to the equations governing dissolution and transport using streamlines coupled with a parallelization approach. In addition, an analytical solution to the dissolution and transfer equations of uranium describing the In-Situ Leaching (ISL) mining recovery is found using an approximation series to the 2nd order. The analytical solution is compared to the 1D numerical resolution along the streamlines and to the 3D simulation results superimposed on the streamline. Both approaches give similar results with a relative error of \textless2 % (2%). The proposed methodology is then applied to a case study in which the classical 3D resolution is compared to the newly suggested streamline solution, demonstrating that the streamline approach increases computational performances by a factor ranging from hundred to thousand depending on the complexity of the grid-block model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ kurmanseiit_streamline-based_2023 Serial 190  
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L. url  openurl
  Title (up) Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 865 Issue Pages 161033  
  Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining  
  Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155  
Permanent link to this record
 

 
Author Smedley, P.L.; Kinniburgh, D.G. url  openurl
  Title (up) Uranium in natural waters and the environment: Distribution, speciation and impact Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105534  
  Keywords Drinking water, Mine water, NORM, Radionuclide, Redox, U isotopes, Uranium, Uranyl  
  Abstract The concentrations of U in natural waters are usually low, being typically less than 4 μg/L in river water, around 3.3 μg/L in open seawater, and usually less than 5 μg/L in groundwater. Higher concentrations can occur in both surface water and groundwater and the range spans some six orders of magnitude, with extremes in the mg/L range. However, such extremes in surface water are rare and linked to localized mineralization or evaporation in alkaline lakes. High concentrations in groundwater, substantially above the WHO provisional guideline value for U in drinking water of 30 μg/L, are associated most strongly with (i) granitic and felsic volcanic aquifers, (ii) continental sandstone aquifers especially in alluvial plains and (iii) areas of U mineralization. High-U groundwater provinces are more common in arid and semi-arid terrains where evaporation is an additional factor involved in concentrating U and other solutes. Examples of granitic and felsic volcanic terrains with documented high U concentrations include several parts of peninsular India, eastern USA, Canada, South Korea, southern Finland, Norway, Switzerland and Burundi. Examples of continental sandstone aquifers include the alluvial plains of the Indo-Gangetic Basin of India and Pakistan, the Central Valley, High Plains, Carson Desert, Española Basin and Edwards-Trinity aquifers of the USA, Datong Basin, China, parts of Iraq and the loess of the Chaco-Pampean Plain, Argentina. Many of these plains host eroded deposits of granitic and felsic volcanic precursors which likely act as primary sources of U. Numerous examples exist of groundwater impacted by U mineralization, often accompanied by mining, including locations in USA, Australia, Brazil, Canada, Portugal, China, Egypt and Germany. These may host high to extreme concentrations of U but are typically of localized extent. The overarching mechanisms of U mobilization in water are now well-established and depend broadly on redox conditions, pH and solute chemistry, which are shaped by the geological conditions outlined above. Uranium is recognized to be mobile in its oxic, U(VI) state, at neutral to alkaline pH (7–9) and is aided by the formation of stable U–CO3(±Ca, Mg) complexes. In such oxic and alkaline conditions, U commonly covaries with other similarly controlled anions and oxyanions such as F, As, V and Mo. Uranium is also mobile at acidic pH (2–4), principally as the uranyl cation UO22+. Mobility in U mineralized areas may therefore occur in neutral to alkaline conditions or in conditions with acid drainage, depending on the local occurrence and capacity for pH buffering by carbonate minerals. In groundwater, mobilization has also been observed in mildly (Mn-) reducing conditions. Uranium is immobile in more strongly (Fe-, SO4-) reducing conditions as it is reduced to U(IV) and is either precipitated as a crystalline or ‘non-crystalline’ form of UO2 or is sorbed to mineral surfaces. A more detailed understanding of U chemistry in the natural environment is challenging because of the large number of complexes formed, the strong binding to oxides and humic substances and their interactions, including ternary oxide-humic-U interactions. Improved quantification of these interactions will require updating of the commonly-used speciation software and databases to include the most recent developments in surface complexation models. Also, given their important role in maintaining low U concentrations in many natural waters, the nature and solubility of the amorphous or non-crystalline forms of UO2 that result from microbial reduction of U(VI) need improved quantification. Even where high-U groundwater exists, percentage exceedances of the WHO guideline value are variable and often small. More rigorous testing programmes to establish usable sources are therefore warranted in such vulnerable aquifers. As drinking-water regulation for U is a relatively recent introduction in many countries (e.g. the European Union), testing is not yet routine or established and data are still relatively limited. Acquisition of more data will establish whether analogous aquifers elsewhere in the world have similar patterns of aqueous U distribution. In the high-U groundwater regions that have been recognized so far, the general absence of evidence for clinical health symptoms is a positive finding and tempers the scale of public health concern, though it also highlights a need for continued investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_uranium_2023 Serial 118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: