toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Qiu, W.; Yang, Y.; Song, J.; Que, W.; Liu, Z.; Weng, H.; Wu, J.; Wu, J. url  openurl
  Title (down) What chemical reaction dominates the CO2 and O2 in-situ uranium leaching?: Insights from a three-dimensional multicomponent reactive transport model at the field scale Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105522  
  Keywords Carbonate minerals, In-situ leaching (ISL) of uranium, Pyrite oxidation, Reactive transport modeling (RTM)  
  Abstract The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2 in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ qiu_what_2023 Serial 207  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title (down) Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title (down) Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265  
Permanent link to this record
 

 
Author Smedley, P.L.; Kinniburgh, D.G. url  openurl
  Title (down) Uranium in natural waters and the environment: Distribution, speciation and impact Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105534  
  Keywords Drinking water, Mine water, NORM, Radionuclide, Redox, U isotopes, Uranium, Uranyl  
  Abstract The concentrations of U in natural waters are usually low, being typically less than 4 μg/L in river water, around 3.3 μg/L in open seawater, and usually less than 5 μg/L in groundwater. Higher concentrations can occur in both surface water and groundwater and the range spans some six orders of magnitude, with extremes in the mg/L range. However, such extremes in surface water are rare and linked to localized mineralization or evaporation in alkaline lakes. High concentrations in groundwater, substantially above the WHO provisional guideline value for U in drinking water of 30 μg/L, are associated most strongly with (i) granitic and felsic volcanic aquifers, (ii) continental sandstone aquifers especially in alluvial plains and (iii) areas of U mineralization. High-U groundwater provinces are more common in arid and semi-arid terrains where evaporation is an additional factor involved in concentrating U and other solutes. Examples of granitic and felsic volcanic terrains with documented high U concentrations include several parts of peninsular India, eastern USA, Canada, South Korea, southern Finland, Norway, Switzerland and Burundi. Examples of continental sandstone aquifers include the alluvial plains of the Indo-Gangetic Basin of India and Pakistan, the Central Valley, High Plains, Carson Desert, Española Basin and Edwards-Trinity aquifers of the USA, Datong Basin, China, parts of Iraq and the loess of the Chaco-Pampean Plain, Argentina. Many of these plains host eroded deposits of granitic and felsic volcanic precursors which likely act as primary sources of U. Numerous examples exist of groundwater impacted by U mineralization, often accompanied by mining, including locations in USA, Australia, Brazil, Canada, Portugal, China, Egypt and Germany. These may host high to extreme concentrations of U but are typically of localized extent. The overarching mechanisms of U mobilization in water are now well-established and depend broadly on redox conditions, pH and solute chemistry, which are shaped by the geological conditions outlined above. Uranium is recognized to be mobile in its oxic, U(VI) state, at neutral to alkaline pH (7–9) and is aided by the formation of stable U–CO3(±Ca, Mg) complexes. In such oxic and alkaline conditions, U commonly covaries with other similarly controlled anions and oxyanions such as F, As, V and Mo. Uranium is also mobile at acidic pH (2–4), principally as the uranyl cation UO22+. Mobility in U mineralized areas may therefore occur in neutral to alkaline conditions or in conditions with acid drainage, depending on the local occurrence and capacity for pH buffering by carbonate minerals. In groundwater, mobilization has also been observed in mildly (Mn-) reducing conditions. Uranium is immobile in more strongly (Fe-, SO4-) reducing conditions as it is reduced to U(IV) and is either precipitated as a crystalline or ‘non-crystalline’ form of UO2 or is sorbed to mineral surfaces. A more detailed understanding of U chemistry in the natural environment is challenging because of the large number of complexes formed, the strong binding to oxides and humic substances and their interactions, including ternary oxide-humic-U interactions. Improved quantification of these interactions will require updating of the commonly-used speciation software and databases to include the most recent developments in surface complexation models. Also, given their important role in maintaining low U concentrations in many natural waters, the nature and solubility of the amorphous or non-crystalline forms of UO2 that result from microbial reduction of U(VI) need improved quantification. Even where high-U groundwater exists, percentage exceedances of the WHO guideline value are variable and often small. More rigorous testing programmes to establish usable sources are therefore warranted in such vulnerable aquifers. As drinking-water regulation for U is a relatively recent introduction in many countries (e.g. the European Union), testing is not yet routine or established and data are still relatively limited. Acquisition of more data will establish whether analogous aquifers elsewhere in the world have similar patterns of aqueous U distribution. In the high-U groundwater regions that have been recognized so far, the general absence of evidence for clinical health symptoms is a positive finding and tempers the scale of public health concern, though it also highlights a need for continued investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_uranium_2023 Serial 118  
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L. url  openurl
  Title (down) Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 865 Issue Pages 161033  
  Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining  
  Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: