|   | 
Details
   web
Records
Author Leibundgut, C.; Maloszewski, P.; Külls, C.
Title Tracers in Hydrology Type Book Whole
Year 2009 Publication Abbreviated Journal
Volume Issue 1. Ed. Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Leibundgut2009tracers Serial 37
Permanent link to this record
 

 
Author Külls, C.
Title Groundwater of the North-Western Kalahari, Namibia: estimation of recharge and quantification of the flow system Type Book Whole
Year 2001 Publication Hydrogeologie und Umwelt Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Doctoral thesis
Publisher Hydrogeologie und Umwelt Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kuells2003groundwater Serial 38
Permanent link to this record
 

 
Author Aldawsari, S.; Kampmann, R.; Harnisch, J.; Rohde, C.
Title Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review Type Journal Article
Year 2022 Publication Materials Abbreviated Journal
Volume 15 Issue 3 Pages
Keywords
Abstract Ordinary Portland cement (OPC) is known for its significant contribution to carbon dioxide emissions. Geopolymer has a lower footprint in terms of CO2 emissions and has been considered as an alternative for OPC. A well-developed understanding of the use of fly-ash-based and slag-based geopolymers as separate systems has been reached in the literature, specifically regarding their mechanical properties. However, the microstructural and durability of the combined system after slag addition introduces more interactive gels and complex microstructural formations. The microstructural changes of complex blended systems contribute to significant advances in the durability of fly ash/slag geopolymers. In the present review, the setting time, microstructural properties (gel phase development, permeability properties, shrinkage behavior), and durability (chloride resistance, sulfate attack, and carbonatation), as discussed literature, are studied and summarized to simplify and draw conclusions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ma15030876 Serial 84
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Marinos2022 Serial 82
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 81
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 85
Permanent link to this record
 

 
Author Ardelt, G.; Külls, C.; Hellbrück, H.
Title Towards intrinsic molecular communication using isotopic isomerism Type Journal Article
Year 2018 Publication Open Journal of Internet Of Things (OJIOT) Abbreviated Journal
Volume 4 Issue 1 Pages 135-143
Keywords
Abstract
Address
Corporate Author Thesis
Publisher RonPub Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Ardelt2018towards Serial 18
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 114 Issue Pages 104524
Keywords geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020hydrochemical Serial 13
Permanent link to this record
 

 
Author Lightfoot, D.R.
Title Moroccan khettara: Traditional irrigation and progressive desiccation Type Journal Article
Year 1996 Publication Geoforum Abbreviated Journal
Volume 27 Issue 2 Pages 261-273
Keywords
Abstract A 300 km network of khettara (qanat) subsurface irrigation channels was excavated in the Tafilalt basin beginning in the late 14th century. More than 75 of these chains provided perennial water following the breakup of the ancient city of Sijilmassa. Khettara continued to function for much of the northern oasis until the early 1970s, when new technologies and government policies forced changes. Data on origins, maintenance, and current use were collected from archival sources, aerial photographs, Landsat imagery, and from interviews. Insufficient water resources and unsustainable practices have dramatically lowered the water table, drying up khettara. This has resulted in a loss of local control over water resources, abandonment of a sustainable irrigation system, and progressive desiccation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7185 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Lightfoot1996261 Serial 257
Permanent link to this record
 

 
Author Vogel, J.C.; Talma, A.S.; Heaton, T.H.E.
Title Gaseous nitrogen as evidence for denitrification in groundwater Type Journal Article
Year 1981 Publication Journal of Hydrology Abbreviated Journal
Volume 50 Issue Pages 191-200
Keywords
Abstract By investigating the nitrate, oxygen, nitrogen and argon concentrations and 15N14N ratios in artesian groundwater with radiocarbon ages ranging up to 27,000 yr. a process of very slow denitrification in a confined aquifer is demonstrated. The calculated nitrogenisotope fractionation factor associated with this reaction is comparable to that reported for bacterial cultures in vitro and in vivo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Vogel1981191 Serial 280
Permanent link to this record