toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume (down) 53 Issue 12 Pages 4033-4041  
  Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
 

 
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A. url  openurl
  Title Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
  Year 2021 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume (down) 15 Issue Pages 100657  
  Keywords Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1  
  Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250  
Permanent link to this record
 

 
Author Musy, S.; Meyzonnat, G.; Barbecot, F.; Hunkeler, D.; Sültenfuss, J.; Solomon, D.K.; Purtschert, R. url  openurl
  Title In-situ sampling for krypton-85 groundwater dating Type Journal Article
  Year 2021 Publication Journal of Hydrology X Abbreviated Journal  
  Volume (down) 11 Issue Pages 100075  
  Keywords Noble gases, Tracers, Groundwater, Dating, Sampling Methodology  
  Abstract Krypton-85 and other radioactive noble gases are widely used for groundwater dating purposes. 85Kr analysis require large volumes of water to reach the analytical requirements. Conventionally, this water is pumped to the surface to be degassed with a gas extraction system. The large pumping rate may disturb the natural flow field and requires substantial field logistics. Hence, we propose a new in-situ degassing method, in which membrane contactors are used to degas the groundwater directly in the well and gas is collected at the surface. This way, field work is facilitated, groundwater system disturbance is minimized, and the gas sample is collected at a specific depth. We demonstrate the tightness of the system regarding atmospheric air contamination for a collection times of 24 h, which is sufficient for both low-level counting and laser-based counting methods for 85Kr. The minimal borehole diameter is 7.5 cm for the prototype presented in this research but can easily be reduced to smaller diameters. In a case study, we compare the results obtained with the new passive method with those from a conventional packer setup sampling. Additionally, 3H/3He samples were collected for both sampling regimes and the dating results were compared with those from 85Kr. A good agreement between tracer ages is demonstrated and the age stratigraphy is consistent with the expected age distribution for a porous unconfined aquifer. In addition, our study emphasizes the differences between the age information sampled with various methods. In conclusion, we demonstrate that the new in situ quasi-passive method provides a more representative age stratigraphy with depth in most cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Musy2021100075 Serial 215  
Permanent link to this record
 

 
Author Puri, S. url  isbn
openurl 
  Title Chapter 9 – Transboundary aquifers: a shared subsurface asset, in urgent need of sound governance Type Book Chapter
  Year 2021 Publication Global Groundwater Abbreviated Journal  
  Volume (down) Issue Pages 113-128  
  Keywords ILC Draft Articles, impact on GDP, sound governance, Transboundary aquifers  
  Abstract Apart from some notable exceptions, the sound governance of transboundary aquifers (coupled or uncoupled to rivers) is seriously lacking in most regions of the world, despite a highly successful 20-year ISARM initiative. The distinction between regions of water abundance (as in the Haute Savoie–Geneva aquifers) and those of water scarcity (\textless1000 m3/an/capita), as in the Rum-Saq aquifer, ought to be a driver for the urgency in adopting sound governance. In the latter regions, however, such an urgent response faces too many hurdles (institutional, financial, and weak capacity). Climate change, one of the global megatrends (among demography, economic shift, resources stress, urbanization, and novel viruses such as COVID-19), will exacerbate the problem in the coming decade and beyond. This chapter provides an critical perspective on the status of this subsurface asset in 570 or so, domestic and transboundary aquifers of the world (self-identified by country experts), while taking full account of their interconnections, or not, with surface waters. This critical perspective will be grounded in two important factors, first the hiatus in adoption by countries of the evolving international water law and guidance on transboundary aquifers (the Draft Articles, which provide legal pathways for collaboration or eventually dispute resolution), and second the framework of the sustainable development goals (SDG) 6 (clean water and sanitation), which countries have committed themselves to with reference to transboundary waters. The critical perspective finds that despite the lack of momentum in adopting formal global norms, sporadic cooperation and collaboration is continuing and is well received, when delivered methodically through the support of international agencies. The findings of the critical perspective are that even if water-related SDGs will have been achieved across the world, it would contribute precious little to meaningful enhancement of governance of transboundary aquifers, unless they have been explicitly addressed in terms that are tangible to decision makers, such as the impact of disregarding them on the current or future national GDP. The onset of a “new socioeconomic normal” in the aftermath of COVID-19 could further defer meaningful progress, taking the example of Latin America, where a 5% decline has been forecast for 2020. With such declines in the finances of governments, attention to shared aquifer resources may well decline even further. Urgent wise reaction to this possibility must be a priority for the professional science-policy community.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-818172-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mukherjee_chapter_2021 Serial 106  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: