toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Edmunds, W.M.; Shand, P.; Hart, P.; Ward, R.S. url  openurl
  Title The natural (baseline) quality of groundwater: a UK pilot study Type Journal Article
  Year 2003 Publication Science of The Total Environment Abbreviated Journal  
  Volume 310 Issue 1 Pages 25-35  
  Keywords Baseline quality, Groundwater, Hydrogeochemistry, Monitoring, Water Policy  
  Abstract Knowledge of the natural baseline quality of groundwaters is an essential prerequisite for understanding pollution and for imposing regulatory limits. The natural baseline of groundwaters may show a range of concentrations depending on aquifer mineralogy, facies changes, flow paths and residence time. The geochemical controls on natural concentrations are discussed and an approach to defining baseline concentrations using geochemical and statistical tools is proposed. The approach is illustrated using a flowline from the Chalk aquifer in Berkshire, UK where aerobic and anaerobic sections of the aquifer are separately considered. The baseline concentrations for some elements are close to atmospheric values whereas others evolve through time-dependent water–rock interaction. Certain solutes (K, NH4+), often considered contaminants, reach naturally high concentrations due to geochemical controls; transition metal concentrations are generally low, although their concentrations may be modified by redox controls. It is recommended that the baseline approach be incorporated into future management strategies, notably monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ edmunds_natural_2003 Serial 166  
Permanent link to this record
 

 
Author (up) Smedley, P.L.; Bearcock, J.M.; Ward, R.S.; Crewdson, E.; Bowes, M.J.; Darling, W.G.; Smith, A.C. url  openurl
  Title Monitoring of methane in groundwater from the Vale of Pickering, UK: Temporal variability and source discrimination Type Journal Article
  Year 2023 Publication Chemical Geology Abbreviated Journal  
  Volume 636 Issue Pages 121640  
  Keywords Aquifer, Biogenic, Ethane, Hydrocarbons, Methane, Shale gas  
  Abstract Groundwater abstracted from aquifers in the Vale of Pickering, North Yorkshire, UK and monitored over the period 2015–2022, shows evidence of variable but commonly high concentrations of dissolved CH4. Sampled groundwater from the Jurassic organic-rich Kimmeridge Clay Formation (boreholes up to 180 m depth) has concentrations up to 57 mg/L, and concentrations up to 59 mg/L are found in groundwater from underlying confined Corallian Group limestone (borehole depths 50–227 m). The high concentrations are mainly from boreholes in the central parts of the vale. Small concentrations of ethane (C2H6, up to 800 μg/L) have been found in the Kimmeridge Clay and confined Corallian groundwaters, and of propane (C3H8, up to 160 μg/L) in deeper boreholes (110–180 m) from these formations. The concentrations are typically higher in groundwater from the deeper boreholes and vary with hydrostatic pressure, reflecting the pressure control on CH4 solubility. The occurrences contrast with groundwater from shallow Quaternary superficial deposits which have low CH4 concentrations (up to 0.39 mg/L), and with the unconfined and semi-confined sections of the Corallian aquifer (up to 0.7 mg/L) around the margins of the vale. Groundwater from the Quaternary, Kimmeridge Clay formations and to a small extent the confined Corallian aquifer, supports local private-water supplies, that from the peripheral unconfined sections of Corallian also supports public supply for towns and villages across the region. Dissolved methane/ethane (C1/C2) ratios and stable-isotopic compositions (δ13C-CH4, δ2H-CH4 and δ13C-CO2) suggest that the high-CH4 groundwater from both the Kimmeridge Clay and confined Corallian formations derives overwhelmingly from biogenic reactions, the methanogenesis pathway by CO2 reduction. A small minority of groundwater samples shows a more enriched δ13C-CH4 composition (−50 to −44 ‰) which has been interpreted as due to anaerobic or aerobic methylotrophic oxidation in situ or post-sampling oxidation, rather than derivation by a thermogenic route. Few of the existing groundwater sites are proximal to abandoned or disused conventional hydrocarbon wells that exist in the region, and little evidence has been found for an influence on groundwater dissolved gases from these sites. The Vale of Pickering has also been under recent consideration for development of an unconventional hydrocarbon (shale-gas) resource. In this context, the monitoring of dissolved gases has been an important step in establishing the high-CH4 baseline of groundwaters from Jurassic deposits in the region and in apportioning their sources and mechanisms of genesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_monitoring_2023 Serial 172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: