toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A. url  openurl
  Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100988  
  Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution  
  Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268  
Permanent link to this record
 

 
Author (up) Abiye, T. url  openurl
  Title Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users Type Journal Article
  Year 2016 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 2-3 Issue Pages 182-189  
  Keywords Arid and semi-arid areas, Groundwater recharge, Recharge estimation methods, Southern Africa  
  Abstract This synthesis on groundwater recharge targets the Southern African region as a result of the dependence of the community and economic sector on the groundwater resource. Several literature based recharge studies were collected and assessed in order to find out the main controls to the occurrence of recharge. The Water Table Fluctuation and Base flow separation methods have been tested in the catchment that drains crystalline basement rocks and dolostones close to the city of Johannesburg, South Africa. Based on the assessed data the Chloride Mass Balance method resulted in groundwater recharge of less than 4% of the rainfall, while it reaches 20%, when rainfall exceeds 600mm. For the classical water balance method, recharge proportion is less than 3% of rainfall as a result of very high ambient temperature in the region. Based on the Saturated Volume Fluctuation and Water Table Fluctuation methods, recharge could be less than 6% for annual rainfall of less than 600mm. Observational results further suggest that sporadic recharge from high intensity rainfall has important contribution to the groundwater recharge in the region, owing to the presence of permeable geological cover, which could not be fully captured by most of the recharge estimation methods. This study further documents an evaluation of the most reliable recharge estimation methods in the area such as the chloride mass balance, saturated volume fluctuation and water table fluctuation methods in order to successfully manage the groundwater resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ abiye_synthesis_2016 Serial 101  
Permanent link to this record
 

 
Author (up) Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. url  openurl
  Title Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa Type Journal Article
  Year 2023 Publication Systems and Soft Computing Abbreviated Journal  
  Volume 5 Issue Pages 200049  
  Keywords Artificial intelligence, Forecasting model, Groundwater levels, Machine learning, Neural networks, Rainfall, Regression, Temperature, Time series  
  Abstract The crucial role which groundwater resource plays in our environment and the overall well-being of all living things can not be underestimated. Nonetheless, mismanagement of resources, over-exploitation, inadequate supply of surface water and pollution have led to severe drought and an overall drop in groundwater resources’ levels over the past decades. To address this, a groundwater flow model and several mathematical data-driven models have been developed for forecasting groundwater levels. However, there is a problem of unavailability and scarcity of the on-site input data needed by the data-driven models to forecast the groundwater level. Furthermore, as a result of the dynamics and stochastic characteristics of groundwater, there is a need for an appropriate, accurate and reliable forecasting model to solve these challenges. Over the years, the broad application of Machine Learning (ML) and Artificial Intelligence (AI) models are gaining attraction as an alternative solution for forecasting groundwater levels. Against this background, this article provides an overview of forecasting methods for predicting groundwater levels. Also, this article uses ML models such as Regressions Models, Deep Auto-Regressive models, and Nonlinear Autoregressive Neural Networks with External Input (NARX) to forecast groundwater levels using the groundwater region 10 at Karst belt in South Africa as a case study. This was done using Python Mx. Version 1.9.1., and MATLAB R2022a machine learning toolboxes. Moreover, the Coefficient of Determination (R2);, Root Mean Square Error (RMSE), Mutual Information gain, Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Mean Absolute Scaled Error (MASE)) models were the forecasting statistical performance metrics used to assess the predictive performance of these models. The results obtained showed that NARX and Support Vector Machine (SVM) have higher performance metrics and accuracy compared to other models used in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2772-9419 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Aderemi2023200049 Serial 219  
Permanent link to this record
 

 
Author (up) Akter, A.; Tanim, A.H.; Islam, M.K. url  openurl
  Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
  Year 2020 Publication Water Science and Engineering Abbreviated Journal  
  Volume 13 Issue 2 Pages 95-105  
  Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth  
  Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Akter202095 Serial 247  
Permanent link to this record
 

 
Author (up) Aldawsari, S.; Kampmann, R.; Harnisch, J.; Rohde, C. url  doi
openurl 
  Title Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review Type Journal Article
  Year 2022 Publication Materials Abbreviated Journal  
  Volume 15 Issue 3 Pages  
  Keywords  
  Abstract Ordinary Portland cement (OPC) is known for its significant contribution to carbon dioxide emissions. Geopolymer has a lower footprint in terms of CO2 emissions and has been considered as an alternative for OPC. A well-developed understanding of the use of fly-ash-based and slag-based geopolymers as separate systems has been reached in the literature, specifically regarding their mechanical properties. However, the microstructural and durability of the combined system after slag addition introduces more interactive gels and complex microstructural formations. The microstructural changes of complex blended systems contribute to significant advances in the durability of fly ash/slag geopolymers. In the present review, the setting time, microstructural properties (gel phase development, permeability properties, shrinkage behavior), and durability (chloride resistance, sulfate attack, and carbonatation), as discussed literature, are studied and summarized to simplify and draw conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ma15030876 Serial 84  
Permanent link to this record
 

 
Author (up) Alexander, A.C.; Ndambuki, J.M. url  openurl
  Title Impact of mine closure on groundwater resource: Experience from Westrand Basin-South Africa Type Journal Article
  Year 2023 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 131 Issue Pages 103432  
  Keywords Acid mine drainage, Groundwater quality, Mine closure, Spatio-temporal variation, Westrand Basin  
  Abstract The mining sector is at the edge of expanding to cater for natural resources that are much needed for technological development and manufacturing. Mushrooming of mines will consequently increase the number of mines closure. Moreover, mines closure have adverse impact on the environment at large and specifically on water resources. This study analyses historical groundwater quality parameters in mine intensive basin of Westrand Basin (WRB) to understand the status of groundwater quality in relation to mining activities and mine closure. Geographic information system (GIS) was used to map the spatio-temporal variation of groundwater quality in the basin and groundwater quality index (GQI) to evaluate its status. The coefficient of variation (CV) was applied to understand the stability of groundwater quality after the mine closure. Results indicated unstable and altered trend with increasing levels of acidity and salts concentration around the mines vicinity following the mine closure. The resultant maps indicated a significant deterioration of groundwater quality around the WRB with concentrations decreasing downstream. Obtained average GQI for the study period of 1996–2015 suggested a moderate groundwater quality at a range of GQI = 64–73. The CV indicated varying water quality at CV \textgreater 30% suggesting presence of source of contamination. Observed groundwater quality trends in Westrand basin suggested that mines closure present potential threat on groundwater quality and thus, a need for a robust mine closure plan and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ alexander_impact_2023 Serial 134  
Permanent link to this record
 

 
Author (up) Alvarado, J.A.C.; Balsiger, B.; Röllin, S.; Jakob, A.; Burger, M. url  openurl
  Title Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan) Type Journal Article
  Year 2014 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 138 Issue Pages 1-10  
  Keywords Former uranium mines, Kyrgyzstan, Mailuu Suu, Uranium contamination, Water resources  
  Abstract An assessment of the radioactive and chemical contamination of the water resources at the former uranium mines and processing sites of Mailuu-Suu, in Kyrgyzstan, was carried out. A large number of water samples were collected from the drinking water distribution system (DWDS), rivers, shallow aquifers and drainage water from the mine tailings. Radionuclides and trace metal contents in water from the DWDS were low in general, but were extremely high for Fe, Al and Mn. These elements were associated with the particle fractions in the water and strongly correlated with high turbidity levels. Overall, these results suggest that water from the DWDS does not represent a serious radiological hazard to the Mailuu Suu population. However, due to the high turbidities and contents of some elements, this water is not good quality drinking water. Water from artesian and dug wells were characterized by elevated levels of U (up to 10 μg/L) and some trace elements (e.g. As, Se, Cr, V and F) and anions (e.g. Cl−, NO3−, SO42−). In two artesian wells, the WHO guideline value of 10 μg/L for As in water was exceeded. As the artesian wells are used as a source of drinking water by a large number of households, special care should be taken in order to stay within the WHO recommended guidelines. Drainage water from the mine tailings was as expected highly contaminated with many chemicals (e.g. As) and radioactive contaminants (e.g. U). The concentrations of U were more than 200 times the WHO guideline value of 30 μg/L for U in drinking water. A large variation in 234U/238U isotopic ratios in water was observed, with values near equilibrium at the mine tailings and far from equilibrium outside this area (reaching ratios of 2.3 in the artesian well). This result highlights the potential use of this ratio as an indicator of the origin of U contamination in Mailuu Suu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ alvarado_radioactive_2014 Serial 123  
Permanent link to this record
 

 
Author (up) Ammar, F.H.; Deschamps, P.; Chkir, N.; Zouari, K.; Agoune, A.; Hamelin, B. url  openurl
  Title Uranium isotopes as tracers of groundwater evolution in the Complexe Terminal aquifer of southern Tunisia Type Journal Article
  Year 2020 Publication Quaternary International Abbreviated Journal  
  Volume 547 Issue Pages 33-49  
  Keywords CT southern Tunisia, Holocene, Mixing, Radicarbon, Uranium isotopes, Water-rock interaction  
  Abstract The Complexe Terminal (CT) multi-layer aquifer is formed by Neogene/Paleogene sand deposits, Upper Senonian (Campanian-Maastrichtian limestones) and Turonian carbonates. The chemical composition and isotopes of carbon and uranium were investigated in groundwater sampled from the main hydrogeological units of the (CT) aquifer in southern Tunisia. We paid special attention to the variability of uranium contents and isotopes ratio (234U/238U) to provide a better understanding of the evolution of the groundwater system. Uranium concentrations range from 1.5 to 19.5 ppb, typical of oxic or mildly reducing conditions in groundwaters. The lowest concentrations are found southeast of the study area, where active recharge is supposed to take place. When looking at the isotope composition, it appears that all the samples, including those from carbonate levels, are in radioactive disequilibrium with significant 234U excess. A clear-cut distinction is observed between Turonian and Senonian carbonate aquifers on the one hand, with 234U/238U activity ratios between 1.1 and 1.8, and the sandy aquifer on the other hand, showing higher ratios from 1.8 to 3.2. The distribution of uranium in this complex aquifer system seems to be in agreement with the lithological variability and are ultimately a function of a number of physical and chemical factors including the uranium content of the hosting geological formation, water-rock interaction and mixing between waters having different isotopic signatures. Significant relationships also appear when comparing the uranium distribution with the major ions composition. It is noticeable that uranium is better correlated with sulfate, calcium and magnesium than with other major ions as chloride or bicarbonate. The 14C activities and δ13C values of DIC cover a wide range of values, from 1.1 pmc to 30.2 pmc and from −3.6‰ to −10.7‰, respectively. 14C model ages estimated by the Fontes and Garnier model are all younger than 22 Ka and indicate that the recharge of CT groundwater occurred mainly during the end of the last Glacial and throughout the Holocene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ammar_uranium_2020 Serial 119  
Permanent link to this record
 

 
Author (up) Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication Urban Climate Abbreviated Journal  
  Volume 51 Issue Pages 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
 

 
Author (up) Asare, P.; Atun, F.; Pfeffer, K. url  openurl
  Title Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra Type Journal Article
  Year 2023 Publication Land Use Policy Abbreviated Journal  
  Volume 133 Issue Pages 106865  
  Keywords Naure-Based Solutions, Urban expansion, Urban floods, Urban flood management, Spatial planning, NBS integration  
  Abstract The rapid rate of urban expansion with its associated physical development in recent years conflicts with the urban ecosystem and the services it provides. In most Sub-Saharan African cities, rapid urban expansion often does not conform to existing spatial plans. Physical developments are sometimes carried out in unauthorized areas, contributing to urban floods. The Sub-Saharan African regions’ flood management strategies mainly focus on engineering solutions but have not been fully functional in mitigating urban floods. There is a scarcity of knowledge on how urban flood-related NBS measures can be part of the spatial development in Sub-Saharan African cities for effective flood management. In order to address this gap, this study employed content and text analysis of policy documents and interviews to understand how current spatial and flood mitigation schemes in Accra, Ghana reflect possible NBS applicability and identify possible approaches to integrating NBS into existing planning schemes to prevent urban floods. The study found that Accra’s spatial plans and flood mitigation schemes reflect a possibility of NBS integration. Additionally, the study unveiled techniques for integrating NBS measures and possible implementation barriers and facilitation in the Ghanaian context, which can be linked to combating the challenges that the Ghanaian spatial planning and flood management authorities face. The research, therefore, contributes to knowledge of how NBS can be integrated into spatial planning systems and flood mitigation schemes in Sub-Saharan African regions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Asare2023106865 Serial 236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: