toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Silva, M.L. da; Bonotto, D.M. url  openurl
  Title Uranium isotopes in groundwater occurring at Amazonas State, Brazil Type Journal Article
  Year 2015 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 97 Issue Pages 24-33  
  Keywords (up) Amazon area, Dissolved uranium, Groundwater, Tube wells, U/U activity ratio  
  Abstract This paper reports the behavior of the dissolved U-isotopes 238U and 234U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and 234U/238U activity ratio (AR) data, 0.01–1.4µgL−1 and 1.0–3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW–NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ silva_uranium_2015 Serial 140  
Permanent link to this record
 

 
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z. url  openurl
  Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 8 Pages 2773-2784  
  Keywords (up) Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar  
  Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title Semi-analytical solutions of discharge variation of a qanat in an unconfined aquifer subjected to general areal recharge and nearby pumping well discharge Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 584 Issue Pages 124691  
  Keywords (up) Analytical solution, Laplace domain, Screen segmentation, Qanat, Areal recharge, Constant head  
  Abstract Qanat is a type of drain that extract water from aquifers by gravity. Significant amount of fresh water used in Middle East and other parts of the world are supplied by qanats. Despite their importance, discharge variation of these type of wells received almost no attention. The aim of this research is to obtain a Laplace domain solution of discharge variation of a qanat installed in an anisotropic unconfined aquifer subjected to arbitrary areal recharge and nearby pumping well(s) discharge. A new semi-analytical solution of drawdown is obtained first to implement the effects of arbitrary areal recharge and nearby pumping well(s) using the principle of superposition. Then, the discharge variation solution of the qanat is obtained from the drawdown solution. To establish a constant-head boundary condition at the qanat periphery, the qanat is discretized into several segments. The results of this study are presented in dimensionless discharge-dimensionless time curves. The effects of hydraulic as well as geometric parameters on the discharge variation of the qanat due to arbitrary areal recharge, falling of water table from its initial position and discharge of nearby wells are explored. We also investigate the influences of distance and screen depth and location of the nearby well on the discharge variation of the qanat. The results of this study can be utilized for multiple purposes: 1) to predict discharge of qanat in response to rainfall and nearby pumping well(s); 2) to estimate the aquifer parameters using hydrograph of the qanat; 3) to determine optimal location and pumping pattern of the nearby wells to minimize their influences on the discharge of the qanat; 4) to calculate water budget of aquifers drained by a qanat. The equation presented in this work can also be used to estimate discharge of a horizontal drain installed in cropland subjected to arbitrary irrigation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2020124691 Serial 261  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title On the discharge variation of a qanat in an alluvial fan aquifer Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 610 Issue Pages 127922  
  Keywords (up) Analytical solution, Wedge-shaped aquifer, Image well, Areal recharge  
  Abstract Qanat is a passive (unpumped) horizontal well (or a slant well with a very mild inclined angle) that is capable of extracting water from aquifers by gravity. Many qanats are constructed along the radius of the alluvial fan wedge-shaped aquifers. Analytical modeling of such a qanat-aquifer system provides great benefit for quickly screening different designs of qanats and accessing the performance of qanat discharge in the field. The previous analytical modeling of discharge of qanats, however, did not consider the wedge-shaped aquifers. Thus, the goal of this research is to obtain semi-analytical solutions of discharge variations of qanats in alluvial fan aquifers with nearby pumping wells, subjected to areal recharges due to rainfall. The uniform head boundary is considered inside the qanat (because of its enormous permeability in respect to the background aquifer). The influences of the aquifer lateral boundaries on discharge of qanat and its sensitivity to hydraulic and geometric parameters are explored. The influences of the lateral boundaries on the discharge of qanat due to areal recharge and nearby pumping wells discharge are also explored. The results of this study can be utilized for multiple purposes: 1) to predict the discharge of qanat in an alluvial fan aquifer and explore the influences of the areal recharge and nearby pumping well discharge; 2) to estimate the hydraulic parameters of the alluvial fan aquifer depleted by a qanat; 3) to determine the location of the nearby pumping well to minimize its influences on the discharge of a qanat; 4) to calculate the water budgets of aquifers depleted by qanats and pumping wells and replenished by areal recharge among other applications. This paper is an extension to the work presented by Sedghi and Zhan (2020) (which concerns an infinite unconfined aquifer) for an unconfined alluvial fan aquifer setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2022127922 Serial 267  
Permanent link to this record
 

 
Author Timsina, J.; Weerahewa, J. url  openurl
  Title Restoring ancient irrigation systems for sustainable agro-ecosystems development: Reflections on the special issue Type Journal Article
  Year 2023 Publication Agricultural Systems Abbreviated Journal  
  Volume 209 Issue Pages 103668  
  Keywords (up) Ancient irrigation systems, Degradation, Sustainability, Sri Lanka  
  Abstract Humans have relied on agriculture to feed their communities for thousands of years. Irrigation is practiced in many different forms over the years in countries all over the world. Although modern irrigation systems have been developed, and are in use in many countries, ancient irrigation systems (AISs) have also played a major role in sustaining food production, especially in smallholder farming in least developed and developing countries. The editorial team of Agricultural Systems put out a call for a special issue on restoring AISs for sustainable agro-ecosystems development to capture ancient marvels of traditional irrigation technology across the world. The objectives of this special issue were to: (i) understand and analyse the hydrological and socio-economic networks anchored by AISs; (ii) explain the nature and sustainability of management of these systems in relation to local agro-ecosystems; (iii) analyse the implications of the AISs for land, soil and water quality, and agro-ecosystem services; (iv) qualitative and quantitative analysis of AISs, including bio-physical and bio-economic modelling of these systems; and (v) assess the feasibility of alternative technological, institutional and management strategies to enhance the productivity, profitability, and environmental sustainability of the systems. The overall goal of the special issue was to develop a useful repository for this information as well as to use the journal’s international reach to share this information with the agricultural systems research community and journal readership. This paper provides reflections of papers published in the special issue. The special issue resulted in twelve high quality original research articles and one review article from Asia, Africa and Europe. The findings from various papers revealed that the AISs have been degraded due to human interventions or the anthropogenic activities across the world. Various papers emphasized that as a corrective measure, there is a need for developing and implementing rehabilitation projects in these systems. Authors identified that appropriate policy interventions by the relevant authorities would be a major step towards such rehabilitation process. However, resetting the ecosystem structure of the AISs strictly towards their historical manifestation is neither required nor feasible in the present context as it would contradict the expectations of stakeholders from these systems. The knowledge generated through the special issue provides evidence-based information on various aspects of AISs. It helps aware governments, private sectors and development agencies for improved policy planning and decision making and for prioritizing the restoration, rehabilitation, and management of various AISs around the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Timsina2023103668 Serial 255  
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A. url  openurl
  Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100988  
  Keywords (up) Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution  
  Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268  
Permanent link to this record
 

 
Author Lapworth, D.J.; Brauns, B.; Chattopadhyay, S.; Gooddy, D.C.; Loveless, S.E.; MacDonald, A.M.; McKenzie, A.A.; Muddu, S.; Nara, S.N.V. url  openurl
  Title Elevated uranium in drinking water sources in basement aquifers of southern India Type Journal Article
  Year 2021 Publication Applied Geochemistry Abbreviated Journal  
  Volume 133 Issue Pages 105092  
  Keywords (up) Anthropogenic, Drinking waters, Geogenic, India, Speciation, Uranium  
  Abstract Groundwater resources in the crystalline basement complex of India are crucial for supplying drinking water in both rural and urban settings. Groundwater depletion is recognised as a challenge across parts of India due to over-abstraction, but groundwater quality constraints are perhaps even more widespread and often overlooked at the local scale. Uranium contamination in basement aquifers has been reported in many parts of India, locally exceeding WHO drinking water guideline values of 30 μg/L and posing a potential health risk. In this study 130 water samples were collected across three crystalline basement catchments to assess hydrochemical, geological and anthropogenic controls on uranium mobility and occurrence in drinking water sources. Groundwaters with uranium concentrations exceeding 30 μg/L were found in all three study catchments (30% of samples overall), with concentrations up to 589 μg/L detected. There appears to be a geological control on the occurrence of uranium in groundwater with the granitic gneiss of the Halli and Bengaluru study areas having higher mean uranium concentrations (51 and 68 μg/L respectively) compared to the sheared gneiss of the Berambadi catchment (6.4 μg/L). Uranium – nitrate relationships indicate that fertiliser sources are not a major control on uranium occurrence in these case studies which include two catchments with a long legacy of intense agricultural land use. Geochemical modelling confirmed uranium speciation was dominated by uranyl carbonate species, particularly ternary complexes with calcium, consistent with uranium mobility being affected by redox controls and the presence of carbonates. Urban leakage in Bengaluru led to low pH and low bicarbonate groundwater hydrochemistry, reducing uranium mobility and altering uranium speciation. Since the majority of inhabitants in Karnataka depend on groundwater abstraction from basement aquifers for drinking water and domestic use, exposure to elevated uranium is a public health concern. Improved monitoring, understanding and treatment of high uranium drinking water sources in this region is essential to safeguard public health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lapworth_elevated_2021 Serial 147  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101585  
  Keywords (up) Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L. url  openurl
  Title Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
  Year 2019 Publication Applied Geochemistry Abbreviated Journal  
  Volume 109 Issue Pages 104418  
  Keywords (up) Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium  
  Abstract From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153  
Permanent link to this record
 

 
Author Smedley, P.L.; Bearcock, J.M.; Ward, R.S.; Crewdson, E.; Bowes, M.J.; Darling, W.G.; Smith, A.C. url  openurl
  Title Monitoring of methane in groundwater from the Vale of Pickering, UK: Temporal variability and source discrimination Type Journal Article
  Year 2023 Publication Chemical Geology Abbreviated Journal  
  Volume 636 Issue Pages 121640  
  Keywords (up) Aquifer, Biogenic, Ethane, Hydrocarbons, Methane, Shale gas  
  Abstract Groundwater abstracted from aquifers in the Vale of Pickering, North Yorkshire, UK and monitored over the period 2015–2022, shows evidence of variable but commonly high concentrations of dissolved CH4. Sampled groundwater from the Jurassic organic-rich Kimmeridge Clay Formation (boreholes up to 180 m depth) has concentrations up to 57 mg/L, and concentrations up to 59 mg/L are found in groundwater from underlying confined Corallian Group limestone (borehole depths 50–227 m). The high concentrations are mainly from boreholes in the central parts of the vale. Small concentrations of ethane (C2H6, up to 800 μg/L) have been found in the Kimmeridge Clay and confined Corallian groundwaters, and of propane (C3H8, up to 160 μg/L) in deeper boreholes (110–180 m) from these formations. The concentrations are typically higher in groundwater from the deeper boreholes and vary with hydrostatic pressure, reflecting the pressure control on CH4 solubility. The occurrences contrast with groundwater from shallow Quaternary superficial deposits which have low CH4 concentrations (up to 0.39 mg/L), and with the unconfined and semi-confined sections of the Corallian aquifer (up to 0.7 mg/L) around the margins of the vale. Groundwater from the Quaternary, Kimmeridge Clay formations and to a small extent the confined Corallian aquifer, supports local private-water supplies, that from the peripheral unconfined sections of Corallian also supports public supply for towns and villages across the region. Dissolved methane/ethane (C1/C2) ratios and stable-isotopic compositions (δ13C-CH4, δ2H-CH4 and δ13C-CO2) suggest that the high-CH4 groundwater from both the Kimmeridge Clay and confined Corallian formations derives overwhelmingly from biogenic reactions, the methanogenesis pathway by CO2 reduction. A small minority of groundwater samples shows a more enriched δ13C-CH4 composition (−50 to −44 ‰) which has been interpreted as due to anaerobic or aerobic methylotrophic oxidation in situ or post-sampling oxidation, rather than derivation by a thermogenic route. Few of the existing groundwater sites are proximal to abandoned or disused conventional hydrocarbon wells that exist in the region, and little evidence has been found for an influence on groundwater dissolved gases from these sites. The Vale of Pickering has also been under recent consideration for development of an unconventional hydrocarbon (shale-gas) resource. In this context, the monitoring of dissolved gases has been an important step in establishing the high-CH4 baseline of groundwaters from Jurassic deposits in the region and in apportioning their sources and mechanisms of genesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_monitoring_2023 Serial 172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: