toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Xie, T.; Lian, B.; Chen, C.; Qian, T.; Liu, X.; Shang, Z.; Li, T.; Wang, R.; Wang, Z.; Zhang, A.; Zhu, J. url  openurl
  Title Leaching behaviour and mechanism of U, 226Ra and 210Pb from uranium tailings at different pH conditions Type Journal Article
  Year 2023 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 270 Issue Pages 107300  
  Keywords Leaching experiments, Pb, Ra, U, Uranium tailings  
  Abstract A large number of radionuclides remain in uranium tailings, and U, 226Ra and 210Pb leach out with water chemistry, causing potential radioactive contamination to the surrounding environment. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling, mixed and homogenised, and analysed for mineral and chemical composition, microscopic morphology, U, 226Ra and 210Pb fugacity, static leaching and dynamic leaching of U, 226Ra and 210Pb in uranium tailings at different pH conditions. The variation of U, 226Ra and 210Pb concentrations in the leachate under different pH conditions with time was obtained, and the leaching mechanism was analysed. The results showed that the uranium tailings were dominated by quartz, plagioclase and other minerals, of which SiO2 and Al2O3 accounted for 65.45% and 13.32% respectively, and U, 226Ra and 210Pb were mainly present in the residue form. The results of the static leaching experiments show that pH mainly influences the leaching of U, 226Ra and 210Pb by changing their chemical forms and the particle properties of the tailings, and that the lower the pH the more favourable the leaching. The results of dynamic leaching experiments during the experimental cycle showed that the leaching concentration and cumulative release of U, 226Ra and 210Pb in the leach solution were greater at lower pH conditions than at higher pH conditions, and the leaching of U, 226Ra and 210Pb at different pH conditions was mainly from the water-soluble and exchangeable states. The present research results are of great significance for the environmental risk management and control of radioactive contamination in existing uranium tailings ponds, and are conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ xie_leaching_2023 Serial 200  
Permanent link to this record
 

 
Author (up) Zhang, H.; Gao, J.; Xu, L.; Zhang, X. url  openurl
  Title Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China Type Journal Article
  Year 2022 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 251-252 Issue Pages 106982  
  Keywords Drilling mud, Exemption management, In situ leaching, Radioactivity  
  Abstract The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit’s grade and conditions, were proposed for in situ leaching drilling projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhang_case_2022 Serial 191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: