toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. url  openurl
  Title A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 621 Issue Pages 129538  
  Keywords Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning  
  Abstract (up) Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226  
Permanent link to this record
 

 
Author Gimeno, M.J.; Tullborg, E.-L.; Nilsson, A.-C.; Auqué, L.F.; Nilsson, L. url  openurl
  Title Hydrogeochemical characterisation of the groundwater in the crystalline basement of Forsmark, the selected area for the geological nuclear repositories in Sweden Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 624 Issue Pages 129818  
  Keywords Crystalline bedrock, Deep geological repository, Glacial meltwater intrusion, Groundwater mixing, Hydrogeochemical model, Nuclear waste disposal  
  Abstract (up) Numerous groundwater analyses from the crystalline bedrock in the Forsmark area have been performed between 2002 and 2019, together with thorough geological, geophysical, and hydrogeological studies, within the site investigations carried out by the Swedish Nuclear Fuel and Waste Management Company. The groundwater samples have been taken from boreholes down to ≈ 1000 m and the analysis include major- and trace-elements, stable and radiogenic isotopes, gases and microbes. The chemical and isotopic composition of these groundwaters evidences the presence of non-marine brackish to saline groundwaters with very long residence times (many hundreds of thousands of years) and a series of complex mixing events resulting from the recharge of different waters over time: glacial meltwaters, probably from different glaciations of which the latest culminated some 20,000 years ago, and marine waters from the Baltic starting some 7000 years ago. Later, meteoric water and present Baltic Sea water have recharged in different parts of the upper 100 m. These mixing events have also triggered chemical and microbial reactions that have conditioned some of the important groundwater parameters and, together with the structural complexity of the area, they have promoted a heterogeneous distribution of groundwater compositions in the bedrock. Due to these evident differences in chemistry, residence time and origin of the groundwater, several groundwater types were defined in order to facilitate the visualisation and communication. The differentiation (linked to the paleohydrological history of the area) was based on Cl concentration, Cl/Mg ratio (marine component), and δ18O value (glacial component). The work presented in this paper increases the understanding of the groundwater evolution in fractured and compartmentalised aquifers where mixing processes are the most important mechanisms. The model proposed to characterise the present groundwater system of the Forsmark area will also help to predict the future hydrogeochemical behaviour of the groundwater system after the construction of the repositories for the nuclear wastes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gimeno_hydrogeochemical_2023 Serial 137  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title On the discharge variation of a qanat in an alluvial fan aquifer Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 610 Issue Pages 127922  
  Keywords Analytical solution, Wedge-shaped aquifer, Image well, Areal recharge  
  Abstract (up) Qanat is a passive (unpumped) horizontal well (or a slant well with a very mild inclined angle) that is capable of extracting water from aquifers by gravity. Many qanats are constructed along the radius of the alluvial fan wedge-shaped aquifers. Analytical modeling of such a qanat-aquifer system provides great benefit for quickly screening different designs of qanats and accessing the performance of qanat discharge in the field. The previous analytical modeling of discharge of qanats, however, did not consider the wedge-shaped aquifers. Thus, the goal of this research is to obtain semi-analytical solutions of discharge variations of qanats in alluvial fan aquifers with nearby pumping wells, subjected to areal recharges due to rainfall. The uniform head boundary is considered inside the qanat (because of its enormous permeability in respect to the background aquifer). The influences of the aquifer lateral boundaries on discharge of qanat and its sensitivity to hydraulic and geometric parameters are explored. The influences of the lateral boundaries on the discharge of qanat due to areal recharge and nearby pumping wells discharge are also explored. The results of this study can be utilized for multiple purposes: 1) to predict the discharge of qanat in an alluvial fan aquifer and explore the influences of the areal recharge and nearby pumping well discharge; 2) to estimate the hydraulic parameters of the alluvial fan aquifer depleted by a qanat; 3) to determine the location of the nearby pumping well to minimize its influences on the discharge of a qanat; 4) to calculate the water budgets of aquifers depleted by qanats and pumping wells and replenished by areal recharge among other applications. This paper is an extension to the work presented by Sedghi and Zhan (2020) (which concerns an infinite unconfined aquifer) for an unconfined alluvial fan aquifer setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2022127922 Serial 267  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title Semi-analytical solutions of discharge variation of a qanat in an unconfined aquifer subjected to general areal recharge and nearby pumping well discharge Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 584 Issue Pages 124691  
  Keywords Analytical solution, Laplace domain, Screen segmentation, Qanat, Areal recharge, Constant head  
  Abstract (up) Qanat is a type of drain that extract water from aquifers by gravity. Significant amount of fresh water used in Middle East and other parts of the world are supplied by qanats. Despite their importance, discharge variation of these type of wells received almost no attention. The aim of this research is to obtain a Laplace domain solution of discharge variation of a qanat installed in an anisotropic unconfined aquifer subjected to arbitrary areal recharge and nearby pumping well(s) discharge. A new semi-analytical solution of drawdown is obtained first to implement the effects of arbitrary areal recharge and nearby pumping well(s) using the principle of superposition. Then, the discharge variation solution of the qanat is obtained from the drawdown solution. To establish a constant-head boundary condition at the qanat periphery, the qanat is discretized into several segments. The results of this study are presented in dimensionless discharge-dimensionless time curves. The effects of hydraulic as well as geometric parameters on the discharge variation of the qanat due to arbitrary areal recharge, falling of water table from its initial position and discharge of nearby wells are explored. We also investigate the influences of distance and screen depth and location of the nearby well on the discharge variation of the qanat. The results of this study can be utilized for multiple purposes: 1) to predict discharge of qanat in response to rainfall and nearby pumping well(s); 2) to estimate the aquifer parameters using hydrograph of the qanat; 3) to determine optimal location and pumping pattern of the nearby wells to minimize their influences on the discharge of the qanat; 4) to calculate water budget of aquifers drained by a qanat. The equation presented in this work can also be used to estimate discharge of a horizontal drain installed in cropland subjected to arbitrary irrigation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2020124691 Serial 261  
Permanent link to this record
 

 
Author Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. url  openurl
  Title Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 614 Issue Pages 128503  
  Keywords Real-time control, Rainwater harvesting systems, Stormwater control measures, Flood mitigation, Source Control, Climate change  
  Abstract (up) Real-Time Control (RTC) technology is increasingly applied in Rainwater Harvesting (RWH) systems to optimise their performance related to water supply and flood mitigation. However, most studies to date have focussed on testing the benefits at an individual site scale, leaving the potential benefits for downstream stormwater networks largely untested. In this study, we developed a methodology to predict how at-source RTC RWH systems influence the behaviour of a stormwater network. Simulation was enabled by coupling the drainage model in SWMM with an RTC RWH model coded using the R software. We modelled two different RTC strategies across a range of system settings (e.g. storage size for RWH and proportion of storage to which RTC is applied) under two different climate scenarios—current and future climates. The simulations showed that RTC reduced flooding volume and peak flow of the stormwater network, leading to a potential mitigation of urban flooding risks, while also providing a decentralised supplementary water supply. Implementing RTC in more of RWH storages yielded greater benefits than simply increasing storage capacity, in both current and future climates. More importantly, the RTC systems are capable of more precisely managing the resultant flow regime in reducing the erosion and restoring the pre-development conditions in sensitive receiving waters. Our study suggests that RTC RWH storages distributed throughout a catchment can substantially improve the performance of existing drainage systems, potentially avoiding or deferring expensive network upgrades. Investments in real-time control technology would appear to be more promising than investments in detention volume alone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Xu2022128503 Serial 233  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: