toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages (up) 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Rosen, M.R.; Burow, K.R.; Fram, M.S. url  openurl
  Title Anthropogenic and geologic causes of anomalously high uranium concentrations in groundwater used for drinking water supply in the southeastern San Joaquin Valley, CA Type Journal Article
  Year 2019 Publication Journal of Hydrology Abbreviated Journal  
  Volume 577 Issue Pages (up) 124009  
  Keywords California, Central Valley, Geochemistry, Groundwater San Joaquin Valley, Uranium  
  Abstract Concentrations of uranium (U) \textgreater30 µg/L in groundwater are relatively uncommon in drinking water in the United States but can be of concern in those areas where complex interactions of aquifer materials and anthropogenic alterations of the natural flow regime mobilize U. High concentrations (\textgreater30 µg/L) of U in the southeastern San Joaquin Valley, California, USA, have been detected in 24 percent of 257 domestic, irrigation, and public-supply wells sampled across an approximately 110,000 km2 area. In this study we evaluated mechanisms for mobilization of U in the San Joaquin Valley proposed in previous studies, confirming mobilization by HCO3 and refuting mobilization by NO3 and we refined our understanding of the geologic sources of U to the scale of individual alluvial fans. The location of high concentrations depends on the interactions of geological U sources from fluvial fans that originate in the Sierra Nevada to the east and seepage of irrigation water that contains high concentrations of HCO3 that leaches U from the sediments. In addition, interactions with PO4 from fertilized irrigated fields may sequester U in the aquifer. Principal component analysis of the data demonstrates that HCO3 and ions associated with high total dissolved solids in the aquifer and the percentage of agriculture near the well sampled are associated with high U concentrations. Nitrate concentrations do not appear to control release of U to the aquifer. Age dating of the groundwater and generally increasing U concentrations of the past 25 years in resampled wells where irrigation is prevalent suggests that high U concentrations are associated with younger water, indicating that irrigation of fields over the past 100 years has significantly contributed to increasing concentrations and mobilizing U. In some places, the groundwater is supersaturated with uranyl-containing minerals, as would be expected in roll front deposits. In general, the interaction of natural geological sources high in U, the anthropogenically driven addition of HCO3 and possibly phosphate fertilizer, control the location and concentration of U in each individual fluvial fan, but the addition of nitrate in fertilizer does not appear control the location of high U. These geochemical interactions are complex but can be used to determine controls on anomalously high U in alluvial aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rosen_anthropogenic_2019 Serial 158  
Permanent link to this record
 

 
Author Gil-Márquez, J.M.; Sültenfuß, J.; Andreo, B.; Mudarra, M. url  openurl
  Title Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 580 Issue Pages (up) 124263  
  Keywords Groundwater dating, Evaporite karst, Brine spring, Free-shape models  
  Abstract The hydrogeological functioning of four different areas in a complex evaporite-karst unit of predominantly aquitard behavior in S Spain was investigated. Environmental dating tracers (3H, 3He, 4He, CFC-12, SF6) and hydrochemical data were determined from spring samples to identify and characterize groundwater flow components of different residence times in the media. Results show a general geochemical evolution pattern, from higher (recharge areas) to lower positions (discharge areas), in which mineralization rises as well as the value of the rCl−/SO42−, evidencing longer water-rock interaction. Ne values show degassing of most of the samples, favored by the high salinity of groundwater and the development of karstification so that the concentration of all the considered gases were corrected according to the difference between the theoretical and the measured Ne. The presence of modern groundwater in every sample was proved by the detection of 3H and CFC-12. At the opposite, the higher amount of radiogenic 4He in most samples also indicates that they have an old component. The 3H/3He dating method does not give reliable ages as a consequence of degassing and the large uncertainty of the 3He/4He ratios of the sources for the radiogenic Helium. The large SF6 concentrations suggest terrigenic production related to halite and dolomite. Binary Mixing and Free Shape Models were created based on 3H and CFC-12 data to interpret the age distribution of the samples. Two parameters (GA50 and >70%) were proposed as an indicator of that distribution, as they provide further information than the mean age. Particularly, GA50 is derived from the median groundwater age and is presented as a new way of interpreting mixed groundwater age data. A greater fraction of old groundwater (3H and CFC-12 free) was identified in discharge areas, while the proportion and estimated infiltration date of the younger fractions in recharge areas were higher and more recent, respectively. The application of different approaches has been useful to corroborate previous theoretical conceptual model proposed for the study area and to test the applicability of the used environmental tracer in dating brine groundwater and karst springs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Gilmarquez2020124263 Serial 213  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title Semi-analytical solutions of discharge variation of a qanat in an unconfined aquifer subjected to general areal recharge and nearby pumping well discharge Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 584 Issue Pages (up) 124691  
  Keywords Analytical solution, Laplace domain, Screen segmentation, Qanat, Areal recharge, Constant head  
  Abstract Qanat is a type of drain that extract water from aquifers by gravity. Significant amount of fresh water used in Middle East and other parts of the world are supplied by qanats. Despite their importance, discharge variation of these type of wells received almost no attention. The aim of this research is to obtain a Laplace domain solution of discharge variation of a qanat installed in an anisotropic unconfined aquifer subjected to arbitrary areal recharge and nearby pumping well(s) discharge. A new semi-analytical solution of drawdown is obtained first to implement the effects of arbitrary areal recharge and nearby pumping well(s) using the principle of superposition. Then, the discharge variation solution of the qanat is obtained from the drawdown solution. To establish a constant-head boundary condition at the qanat periphery, the qanat is discretized into several segments. The results of this study are presented in dimensionless discharge-dimensionless time curves. The effects of hydraulic as well as geometric parameters on the discharge variation of the qanat due to arbitrary areal recharge, falling of water table from its initial position and discharge of nearby wells are explored. We also investigate the influences of distance and screen depth and location of the nearby well on the discharge variation of the qanat. The results of this study can be utilized for multiple purposes: 1) to predict discharge of qanat in response to rainfall and nearby pumping well(s); 2) to estimate the aquifer parameters using hydrograph of the qanat; 3) to determine optimal location and pumping pattern of the nearby wells to minimize their influences on the discharge of the qanat; 4) to calculate water budget of aquifers drained by a qanat. The equation presented in this work can also be used to estimate discharge of a horizontal drain installed in cropland subjected to arbitrary irrigation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2020124691 Serial 261  
Permanent link to this record
 

 
Author Tamagnone, P.; Comino, E.; Rosso, M. url  openurl
  Title Rainwater harvesting techniques as an adaptation strategy for flood mitigation Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 586 Issue Pages (up) 124880  
  Keywords Rainwater harvesting techniques, Extreme rainfall, Runoff, Hydraulic modelling, Flood mitigation, Arid and semi-arid climate  
  Abstract The development of adaptation and mitigation strategies to tackle anthropic and climate changes impacts is becoming a priority in drought-prone areas. This study examines the capabilities of indigenous rainwater harvesting techniques (RWHT) to be used as a viable solution for flood mitigation. The study analyses the hydraulic performance of the most used micro-catchment RWHT in sub-Saharan regions, in terms of flow peak reduction (FPR) and volume reduction (VR) at the field and basin scale. Parametrized hyetographs were built to replicate the extreme precipitations that strike Sahelian countries during rainy seasons. 2D hydrodynamic simulations showed that half-moons placed with a staggered configuration (S-HM) have the best performances in reducing runoff. At the field scale, S-HM showed a remarkable FPR of 77% and a VR of 70% in case of extreme rainfall. Instead at the basin scale, in which only 5% of the surface was treated, 13% and 8% respectively for FPR and VR were obtained. In addition, the reduction of the runoff coefficient (Rc) between the different configuration was analyzed. The study critically evaluates hydraulic performances of the different techniques and shows how pitting practices cannot guarantee high performance in case of extreme precipitations. These results will enrich the knowledge of the hydraulic behavior of RWHT; aspect marginally investigated in the scientific literature. Moreover, this study presents the first scientific application of HEC-RAS as a rainfall-runoff model. Despite some limitations, this model has the effective feature of using very high-resolution topography as input for hydraulic simulations. The results presented in this study should encourage stakeholders to upscale the use of RWHT in order to lessen the flood hazard and land degradation that oppresses arid and semi-arid areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tamagnone2020124880 Serial 240  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: