toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karaimeh, S.A. url  openurl
  Title Maintaining desert cultivation: Roman, Byzantine, and Early Islamic water-strategies at Udhruh region, Jordan Type Journal Article
  Year 2019 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 166 Issue Pages 108-115  
  Keywords Irrigation, Qanat, Cultivation, Arid environment, Nabataean, Jordan  
  Abstract (down) The site of Udhruh is located in the arid desert of southern Jordan, about 15 km to the east of Petra. The site was built by the Nabataeans but expanded by the Romans (as a defensive site) and was continuously occupied until the Early Islamic period. It receives less than the 200 mm of annual precipitation, which is crucial for agricultural cultivation. Archaeological evidence from earlier excavations together with new data from several survey projects indicate that areas around Udhruh were cultivated throughout the Roman, Byzantine, and Early Islamic periods (300 BCE–800 CE). The fundamental question is: how did the people of Udhruh sustain their community in the desert, and how did they transform the desert into arable land? The landscape could be utilised thanks to sophisticated water management and irrigation techniques. At least four underground qanat systems were identified providing Udhruh with access to groundwater. At the terminal end of the qanat systems, several types of closed surface channels conveyed the water to reservoirs, which subsequently distributed the water to the field systems. The water systems of Udhruh differ from the well-known Nabataean systems in the surrounding area. As Udhruh was taken over by the Roman army in 106 CE, this study analyses how the Nabataean water systems continued to function and adapt through the Roman and Byzantine periods. A complete understanding of Udhruh’s water systems helps to reconstruct past land use, agricultural activity, and irrigation practices in a currently arid region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Alkaraimeh2019108 Serial 271  
Permanent link to this record
 

 
Author Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C. url  openurl
  Title Mineralogical and geochemical evidence for biogenic uranium mineralization in northern Songliao Basin, NE China Type Journal Article
  Year 2022 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 141 Issue Pages 104556  
  Keywords Bacterial sulfate reduction, In-situ S isotope of pyrite, Northern Songliao basin, Sandstone-type uranium deposit, Sifangtai Formation  
  Abstract (down) The sandstone-hosted uranium mineralization areas in the Sanzhao Sag of the northern Songliao Basin have been newly identified. The target stratum is the Upper Cretaceous Sifangtai Formation and the uranium mineralization mainly occurs in the bottom of Sifangtai Formation, corresponding to channel sand bodies in meandering river system, characterized by medium to fine-grained sandstone. This study proposes the uranium metallogenic model through petrographic observation, whole rock geochemistry, mineralogical study of uranium occurrence form (SEM), organic matter rock–eval pyrolysis analysis (REP) and in-situ sulfur isotope determination of different generations of pyrite by LA-MC-ICP-MS. Compared with the sandstones collected in barren reduction and oxidization zones, the mineralized sandstones show obvious increase in the contents of TOC, total sulfur, Y and U. Petrographic observations indicate that organic matters are mainly inherited from land plants. REP data display that the organic matter (OM) disseminated in the sandstone has very low hydrogen index (HI) from around 0 to 21 mg HC/g TOC and varied oxygen index (OI) from 44 to 115 mg CO2/g TOC, corresponding to Type Ⅳ kerogen (degraded kerogen). There are two types of coffinite with different grain size, micro-particles (μm-sized) and large aggregates (generally up to 100 μm) respectively. The coffinite micro spherules exhibit short rod-like or worm-like morphology occurring in clay matrix and cell cavities in degradofusinite or around subidiomorphic-idiomorphic pyrite. The coarse-grained coffinite contains other mineral facies (e.g. pyrite, quartz) and some of large coffinite aggregates display thrombolite-type microbial structures. The irregular pyrite relict particles in coarse-grained colloidal coffinite have light sulfur isotope compositions characterized by δ34S values from –39.96‰ to –49.89‰. The δ34S values of colloidal pyrite in replacement of OM or of the sub-idiomorphic FeS2 cement filling in the cavities of OM range from –52.77‰ to –13.88‰. Some of sub-idiomorphic pyrite cement and idiomorphic crystal have the heavier signature from – 27.06‰ to + 14.23‰. The light sulfur isotope signature suggests that the sulfur originates from bacterial sulfate reduction (BSR). The OM replacement by pyrite and the highest OI values recorded by REP in uranium mineralized samples are lines of evidence of biodegradation. Bacteria use the organic matter as food source and produce isotopically light reduced sulfur species. Oxygenated uranium-bearing waters infiltrated through the denudated windows at Daqing placanticline into the porous reduced sandstones deposited in the Sanzhao Sag. Uranium was indirectly reduced by BSR-derived iron disulfides or directly reduced by sulfate-reducing bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ren_mineralogical_2022 Serial 144  
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z. url  openurl
  Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
  Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal  
  Volume 15 Issue 3 Pages 83-90  
  Keywords Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond  
  Abstract (down) The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-8507 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128  
Permanent link to this record
 

 
Author Paradis, C.J.; Hoss, K.N.; Meurer, C.E.; Hatami, J.L.; Dangelmayr, M.A.; Tigar, A.D.; Johnson, R.H. url  openurl
  Title Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater Type Journal Article
  Year 2022 Publication Journal of Contaminant Hydrology Abbreviated Journal  
  Volume 251 Issue Pages 104076  
  Keywords Desorption, Dissolution, Groundwater, Surface water, Tracer, Uranium  
  Abstract (down) The recharge of stream water below the baseflow water table can mobilize groundwater contaminants, particularly redox-sensitive and sorptive metals such as uranium. However, in-situ tracer experiments that simulate the recharge of stream water to uranium-contaminated groundwater are lacking, thus limiting the understanding of the potential mechanisms that control the mobility of uranium at the field scale. In this study, a field tracer test was conducted by injecting 100 gal (379 l) of oxic river water into a nearby suboxic and uranium-contaminated aquifer. The traced river water was monitored for 18 days in the single injection well and in the twelve surrounding observation wells. Mobilization of uranium from the solid to the aqueous phase was not observed during the tracer test despite its pre-test presence being confirmed on the aquifer sediments from lab-based acid leaching. However, strong evidence of oxidative immobilization of iron and manganese was observed during the tracer test and suggested that immobile uranium was likely in its oxidized state as U(VI) on the aquifer sediments; these observations ruled out oxidation of U(IV) to U(VI) as a potential mobilization mechanism. Therefore, desorption of U(VI) appeared to be the predominant potential mobilization mechanism, yet it was clearly not solely dependent on concentration as evident when considering that uranium-poor river water (\textless0.015 mg/L) was recharged to uranium-rich groundwater (≈1 mg/L). It was possible that uranium desorption was limited by the relatively higher pH and lower alkalinity of the river water as compared to the groundwater; both factors favor immobilization. However, it was likely that the immobile uranium was associated with a mineral phase, as opposed to a sorbed phase, thus desorption may not have been possible. The results of this field tracer study successfully ruled out two common mobilization mechanisms of uranium: (1) oxidative dissolution and (2) concentration-dependent desorption and ruled in the importance of advection, dispersion, and the mineral phase of uranium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ paradis_elucidating_2022 Serial 135  
Permanent link to this record
 

 
Author Asare, P.; Atun, F.; Pfeffer, K. url  openurl
  Title Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra Type Journal Article
  Year 2023 Publication Land Use Policy Abbreviated Journal  
  Volume 133 Issue Pages 106865  
  Keywords Naure-Based Solutions, Urban expansion, Urban floods, Urban flood management, Spatial planning, NBS integration  
  Abstract (down) The rapid rate of urban expansion with its associated physical development in recent years conflicts with the urban ecosystem and the services it provides. In most Sub-Saharan African cities, rapid urban expansion often does not conform to existing spatial plans. Physical developments are sometimes carried out in unauthorized areas, contributing to urban floods. The Sub-Saharan African regions’ flood management strategies mainly focus on engineering solutions but have not been fully functional in mitigating urban floods. There is a scarcity of knowledge on how urban flood-related NBS measures can be part of the spatial development in Sub-Saharan African cities for effective flood management. In order to address this gap, this study employed content and text analysis of policy documents and interviews to understand how current spatial and flood mitigation schemes in Accra, Ghana reflect possible NBS applicability and identify possible approaches to integrating NBS into existing planning schemes to prevent urban floods. The study found that Accra’s spatial plans and flood mitigation schemes reflect a possibility of NBS integration. Additionally, the study unveiled techniques for integrating NBS measures and possible implementation barriers and facilitation in the Ghanaian context, which can be linked to combating the challenges that the Ghanaian spatial planning and flood management authorities face. The research, therefore, contributes to knowledge of how NBS can be integrated into spatial planning systems and flood mitigation schemes in Sub-Saharan African regions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Asare2023106865 Serial 236  
Permanent link to this record
 

 
Author Uugulu, S.; Wanke, H. url  openurl
  Title Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia Type Journal Article
  Year 2020 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 116 Issue Pages 102844  
  Keywords Chloride mass balance, Groundwater recharge, Isotopic values, Precipitation gradient  
  Abstract (down) The quantification of groundwater resources is essential especially in water scarce countries like Namibia. The chloride mass balance (CMB) method and isotopic composition were used in determining groundwater recharge along a precipitation gradient at three sites, namely: Tsumeb (600 mm/a precipitation); Waterberg (450 mm/a precipitation) and Kuzikus/Ebenhaezer (240 mm/a precipitation). Groundwater and rainwater were collected from year 2016–2017. Rainwater was collected monthly while groundwater was collected before, during and after rainy seasons. Rainwater isotopic values for δ18O and δ2H range from −10.70 to 6.10‰ and from −72.7 to 42.1‰ respectively. Groundwater isotopic values for δ18O range from −9.84 to −5.35‰ for Tsumeb; from −10.85 to −8.60‰ for Waterberg and from −8.24 to −1.56‰ for Kuzikus/Ebenhaezer, while that for δ2H range from −65.6 to −46.7‰ for Tsumeb; −69.4 to −61.2‰ for Waterberg and −54.2 to −22.7‰ for Kuzikus/Ebenhaezer. Rainwater scatters along the GMWL. Rainwater collected in January, February and March are more depleted in heavy isotopes than those in November, December, April and May. Waterberg groundwater plots on the GMWL which indicates absence of evaporation. Tsumeb groundwater plots on/close to the GMWL with an exception of groundwater from the karst Lake Otjikoto which is showing evaporation. Groundwater from Kuzikus/Ebenhaezer shows an evaporation effect, probably evaporation occurs during infiltration since it is observed in all sampling seasons. All groundwater from three sites plot in the same area with rainwater depleted in stable isotopic values, which could indicates that recharge only take place during January, February and March. CMB method revealed that Waterberg has the highest recharge rate ranging between 39.1 mm/a and 51.1 mm/a (8.7% – 11.4% of annual precipitation), Tsumeb with rates ranging from 21.1 mm/a to 48.5 mm/a (3.5% – 8.1% of annual precipitation), and lastly Kuzikus/Ebenhaezer from 3.2 mm/a to 17.5 mm/a (1.4% – 7.3% of annual precipitation). High recharge rates in Waterberg could be related to fast infiltration and absence of evaporation as indicated by the isotopic ratios. Differences in recharge rates cannot only be attributed to the precipitation gradient but also to the evaporation rates and the presence of preferential flow paths. Recharge rates estimated for these three sites can be used in managing the savannah aquifers especially at Kuzikus/Ebenhaezer where evaporation effect is observed that one can consider rain harvesting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uugulu_estimation_2020 Serial 99  
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A. url  openurl
  Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100988  
  Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution  
  Abstract (down) The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268  
Permanent link to this record
 

 
Author Botha, R.; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Chimba, G. url  openurl
  Title Radon in groundwater baseline study prior to unconventional shale gas development and hydraulic fracturing in the Karoo Basin (South Africa) Type Journal Article
  Year 2019 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 147 Issue Pages 7-13  
  Keywords  
  Abstract (down) The prospect of unconventional shale gas development in the semi-arid Karoo Basin (South Africa) has created the prerequisite to temporally characterise the natural radioactivity in associated groundwater which is solely depended on for drinking and agriculture purposes. Radon (222Rn) was the primary natural radionuclide of interest in this study; however, supplementary radium (226Ra and 228Ra) in-water measurements were also conducted. A total of 53 aquifers spanning three provinces were studied during three separate measurement campaigns from 2014 to 2016. The Karoo Basin’s natural radon-in-water levels can be characterised by a minimum of 1 ± 1 Bq/L (consistent with zero or below LLD), a maximum of 183 ± 18 Bq/L and mean of 41 ± 5 Bq/L. The mean radon-in-water levels for shallow aquifers were systematically higher (55 ± 10 Bq/L) compared to deep (14 ± 3 Bq/L) or mixed aquifers (20 ± 6 Bq/L). Radon-in-water activity concentration fluctuations were predominantly observed from shallow aquifers compared to the generally steady levels of deep aquifers. A collective seasonal mean radon-in-water levels increase from the winter of 2014 (44 ± 8 Bq/L) to winter of 2016 (61 ± 16 Bq/L) was noticed which could be related to the extreme national drought experienced in 2015. Radium-in-water (228Ra and 226Ra) levels ranged from below detection level to a maximum of 0.008 Bq/L (226Ra) and 0.015 Bq/L (228Ra). The 228Ra/226Ra ratio was characterised by a minimum of 0.93, a maximum of 6.5 and a mean value of 3.3 ± 1.3. Developing and improving baseline naturally occurring radionuclide groundwater databases is vital to study potential radiological environmental impacts attributed to industrial processes such as hydraulic fracturing or mining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ botha_radon_2019 Serial 169  
Permanent link to this record
 

 
Author Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D. url  openurl
  Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
  Year 2017 Publication Science of The Total Environment Abbreviated Journal  
  Volume 607-608 Issue Pages 281-293  
  Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply  
  Abstract (down) The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W. url  openurl
  Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
  Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 54 Issue 4 Pages 1175-1184  
  Keywords Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine  
  Abstract (down) The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: