toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Silva, M.L. da; Bonotto, D.M. url  openurl
  Title Uranium isotopes in groundwater occurring at Amazonas State, Brazil Type Journal Article
  Year 2015 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 97 Issue Pages 24-33  
  Keywords Amazon area, Dissolved uranium, Groundwater, Tube wells, U/U activity ratio  
  Abstract (down) This paper reports the behavior of the dissolved U-isotopes 238U and 234U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and 234U/238U activity ratio (AR) data, 0.01–1.4µgL−1 and 1.0–3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW–NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ silva_uranium_2015 Serial 140  
Permanent link to this record
 

 
Author Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y. url  openurl
  Title Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
  Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal  
  Volume 51 Issue Pages 104175  
  Keywords Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management  
  Abstract (down) This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-409x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256  
Permanent link to this record
 

 
Author Lim, S.; Chase, B.M.; Chevalier, M.; Reimer, P.J. url  openurl
  Title 50,000years of vegetation and climate change in the southern Namib Desert, Pella, South Africa Type Journal Article
  Year 2016 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume 451 Issue Pages 197-209  
  Keywords Climate reconstruction, Late Quaternary, Namib Desert, Pollen, Rock hyrax middens, South Africa  
  Abstract (down) This paper presents the first continuous pollen record from the southern Namib Desert spanning the last 50,000years. Obtained from rock hyrax middens found near the town of Pella, South Africa, these data are used to reconstruct vegetation change and quantitative estimates of temperature and aridity. Results indicate that the last glacial period was characterised by increased water availability at the site relative to the Holocene. Changes in temperature and potential evapotranspiration appear to have played a significant role in determining the hydrologic balance. The record can be considered in two sections: 1) the last glacial period, when low temperatures favoured the development of more mesic Nama-Karoo vegetation at the site, with periods of increased humidity concurrent with increased coastal upwelling, both responding to lower global/regional temperatures; and 2) the Holocene, during which time high temperatures and potential evapotranspiration resulted in increased aridity and an expansion of the Desert Biome. During this latter period, increases in upwelling intensity created drier conditions at the site. Considered in the context of discussions of forcing mechanisms of regional climate change and environmental dynamics, the results from Pella stand in clear contrast with many inferences of terrestrial environmental change derived from regional marine records. Observations of a strong precessional signal and interpretations of increased humidity during phases of high local summer insolation in the marine records are not consistent with the data from Pella. Similarly, while high percentages of Restionaceae pollen has been observed in marine sediments during the last glacial period, they do not exceed 1% of the assemblage from Pella, indicating that no significant expansion of the Fynbos Biome has occurred during the last 50,000years. These findings pose interesting questions regarding the nature of environmental change in southwestern Africa, and the significance of the diverse records that have been obtained from the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lim_50000years_2016 Serial 107  
Permanent link to this record
 

 
Author Gómez, P.; Garralón, A.; Buil, B.; Turrero, M.J.; Sánchez, L.; Cruz, B. de la url  openurl
  Title Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine Type Journal Article
  Year 2006 Publication Science of The Total Environment Abbreviated Journal  
  Volume 366 Issue 1 Pages 295-309  
  Keywords Geochemical modeling, Granite, Groundwater, Uranium mine, Uranium retention  
  Abstract (down) This paper describes the processes leading to uranium distribution in the groundwater of five boreholes near a restored uranium mine (dug in granite), and the environmental impact of restoration work in the discharge area. The groundwater uranium content varied from \textless1 μg/L in reduced water far from the area of influence of the uranium ore-containing dyke, to 104 μg/L in a borehole hydraulically connected to the mine. These values, however, fail to reflect a chemical equilibrium between the water and the pure mineral phases. A model for the mobilization of uranium in this groundwater is therefore proposed. This involves the percolation of oxidized waters through the fractured granite, leading to the oxidation of pyrite and arsenopyrite and the precipitation of iron oxyhydroxides. This in turn leads to the dissolution of the primary pitchblende and, subsequently, the release of U(VI) species to the groundwater. These U(VI) species are retained by iron hydroxides. Secondary uranium species are eventually formed as reducing conditions are re-established due to water–rock interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gomez_modeling_2006 Serial 162  
Permanent link to this record
 

 
Author Hamidian, A.; Ghorbani, M.; Abdolshahnejad, M.; Abdolshahnejad, A. url  openurl
  Title RETRACTED: Qanat, Traditional Eco-technology for Irrigation and Water Management Type Journal Article
  Year 2015 Publication Agriculture and Agricultural Science Procedia Abbreviated Journal  
  Volume 4 Issue Pages 119-125  
  Keywords  
  Abstract (down) This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editor. The authors have plagiarized part of a book Veins of Desert, by Semsar Yazdi, Ali Asghar; Labbaf Khaneiki, Majid published by UNESCO-ICQHS, 2010 pages 2, 3, 5, 6, 7, 11, 44, 156, 157 and 158. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-7843 ISBN Medium  
  Area Expedition Conference  
  Notes Efficient irrigation management and its effects in urban and rural landscapes Approved no  
  Call Number THL @ christoph.kuells @ Hamidian2015119 Serial 252  
Permanent link to this record
 

 
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T. url  openurl
  Title Sustainability and virtual water: The lessons of history Type Journal Article
  Year 2022 Publication Geography and Sustainability Abbreviated Journal  
  Volume 3 Issue 4 Pages 358-365  
  Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy  
  Abstract (down) This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-6839 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272  
Permanent link to this record
 

 
Author Rallakis, D.; Michels, R.; Cathelineau, M.; Parize, O.; Brouand, M. url  openurl
  Title Conditions for uranium biomineralization during the formation of the Zoovch Ovoo roll-front-type uranium deposit in East Gobi Basin, Mongolia Type Journal Article
  Year 2021 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 138 Issue Pages 104351  
  Keywords Bioreduction, East Gobi Basin, Mongolia, Organic matter, Roll-front, Sulfur isotopes, Uranium  
  Abstract (down) The Zoovch Ovoo uranium roll-front-type deposit is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, which constitutes the upper part of the post-rift infilling of the Mesozoic East Gobi Basin in SE Mongolia. The Sainshand Formation consists of unconsolidated medium-grained sand, silt and clay intervals deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60–80 m thick siliciclastic sequence inside aquifer-driven systems. The overall system experienced shallow burial and was never subjected to temperatures higher than 40 °C. This study proposes a comprehensive metallogenic model for this uranium deposit. Sedimentological and mineralogical observations from drill core samples to the microscopic scale (optical and Scanning Electron Microscopy) together with in situ geochemistry of late-formed phases (Laser Ablation–Inductively Coupled Plasma Mass Spectrometry, Electron Probe Microanalysis, Fourier Transform–Infrared Spectroscopy) were considered for the reconstruction of the main stages of U trapping. In the mineralized zone, the uranium ore is expressed as Ca–enriched uraninite (UO2) and less commonly as Ca–enriched phospho-coffinite (U, P)SiO4. Trapping mechanisms include i) complexation (i.e. uranyl-carboxyl complexes), ii) adsorption on organic or clay particles) and iii) reduction by pyrite and by bacterial activity to amorphous uraninite. In all cases, the organic matter plays either the role of trap for uranium or nutrient for bacteria that can trap uranium through their metabolism. The shallow burial diagenesis conditions do not allow direct reduction of U(VI) by organic carbon. The δ34S values of the iron disulfide are very diverse, fluctuating in extreme cases between −50 to + 50‰, with an average δ34S value for framboidal pyrite at 2‰, and −20‰ for euhedral pyrite. The positive and negative values reflect close versus open fractionation systems, while bacterial sulphate reduction (BSR) is active during the whole diagenetic history of the deposit as an essential source of reduced sulfur. Therefore, using detrital organic matter as a carbon source, microorganisms play a significant role in uranium trapping, either as a direct reducing agent for uranium or pyrite formation, which will trap uranium through redox driven epigenetic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rallakis_conditions_2021 Serial 176  
Permanent link to this record
 

 
Author Pontér, S.; Rodushkin, I.; Engström, E.; Rodushkina, K.; Paulukat, C.; Peinerud, E.; Widerlund, A. url  openurl
  Title Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 793 Issue Pages 148441  
  Keywords Isotope ratios, Mine water, Sediments, Uranium  
  Abstract (down) The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment’s pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased \textgreater20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ponter_early_2021 Serial 154  
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N. url  openurl
  Title Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
  Year 2019 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 109 Issue Pages 50-78  
  Keywords Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium  
  Abstract (down) The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124  
Permanent link to this record
 

 
Author Vogel, J.C.; Talma, A.S.; Heaton, T.H.E.; Kronfeld, J. url  openurl
  Title Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer Type Journal Article
  Year 1999 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 66 Issue 1 Pages 269-276  
  Keywords redox changes in aquifer, sandstone-type uranium deposit, South Africa, uranium series  
  Abstract (down) The solubility of uranium in groundwater is very sensitive to changes in redox conditions. Many secondary (sandstone-type) uranium deposits have been formed when soluble U has precipitated after encountering reducing conditions in the subsurface. In the groundwater of the Uitenhage Aquifer (Cape Province, South Africa), 238U-series isotopes were used to assist in studying the history of the reducing barrier. Uranium isotopes were used to determine the present position of the barrier. Radium and radon were used to evaluate the path of migration that the front of the oxygen depletion zone has taken over the past 105 years. During this time the reducing barrier has moved, leaving in its wake a trail of U in various stages of secular equilibrium with its daughter 230Th. The 226Ra daughter of 230Th is not very mobile. Its growth upon the aquifer wall is reflected in the Rn content of the water. This in turn, due to the relatively great age of the water, indicates the extent of the 230Th ingrowth (from precipitated U) that took place before the barrier migrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ vogel_evaluating_1999 Serial 126  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: