|   | 
Details
   web
Records
Author Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B.
Title Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type Book Chapter
Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal
Volume Issue Pages 213-234
Keywords Distribution, Heath impacts, Remediation techniques, Sources, Uranium
Abstract (up) Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-443-18778-0 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152
Permanent link to this record
 

 
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N.
Title Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
Year 2021 Publication Irrigation and Drainage Abbreviated Journal
Volume 70 Issue 3 Pages 458-469
Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale
Abstract (up) ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L.
Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 865 Issue Pages 161033
Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining
Abstract (up) Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155
Permanent link to this record
 

 
Author Wang, B.; Luo, Y.; Liu, J.-hui; Li, X.; Zheng, Z.-hong; Chen, Q.-qian; Li, L.-yao; Wu, H.; Fan, Q.-ren
Title Ion migration in in-situ leaching (ISL) of uranium: Field trial and reactive transport modelling Type Journal Article
Year 2022 Publication Journal of Hydrology Abbreviated Journal
Volume 615 Issue Pages 128634
Keywords Acid in situ leaching, Banyan-Uul uranium deposit, Influence area, Reactive transport, Sensitivity analysis
Abstract (up) Acid in-situ leaching (ISL) can be used as a mining technique for in situ uranium recover from underground. Acids and oxidants as lixiviants were continuously injected into a sandstone-type uranium deposit in Bayan-Uul (China). It was conducted to facilitate the dissolution of uranium minerals to generate uranyl ions, which could then be extracted for the recovery of uranium resources by the pumping cycle. A reactive transport model based on PHAST was developed to investigate the dynamic reactive migration process of uranium. The simulated results well reproduce the fluid dynamic evolution in the injecting and pumping units, as well as the dynamic release of uranium. The simulated leaching area indicates that the uranium ore leaching area was much larger than the acidification area. In addition, the pollution plume of uranium and acid water was larger than that of the leaching area, which can be used as a reference for uranium mining schemes. Furthermore, the parameter sensitivity analysis indicates the volume fraction of uranium ore and the reaction rate were the main factors affecting uranium leaching efficiency. Without considering the blockage of pores by precipitation, the Fe2+ in the reinjection fluid had a significant negative influence on uranium leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ wang_ion_2022 Serial 195
Permanent link to this record
 

 
Author Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R.
Title Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching Type Journal Article
Year 2011 Publication Chemosphere Abbreviated Journal
Volume 82 Issue 8 Pages 1178-1184
Keywords Acid mine water, Contaminant removal, Surface stabilizing shell, Water treatment, Zero-valent iron nanoparticles
Abstract (up) Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation–reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ klimkova_zero-valent_2011 Serial 196
Permanent link to this record