toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I. url  openurl
  Title Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19668  
  Keywords CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index  
  Abstract Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167  
Permanent link to this record
 

 
Author (down) Ubierna, J.A.J. url  openurl
  Title Tunnel heritage in Spain: Roots of the underground Type Journal Article
  Year 1998 Publication Tunnelling and Underground Space Technology Abbreviated Journal  
  Volume 13 Issue 2 Pages 131-141  
  Keywords  
  Abstract Spain has deep roots in the underground. The territory of myth and legend, of cave and tunnel, has existed in Spain since that ancient time overwhelmed with shreds of fog, where all was myth around heros like Túbal Hércules, Gárgoris and Abidis. The underground evokes strong links with life and death, light and darkness, and has served as a source of inspiration for art through the centuries. The history of tunnels in Spain reflects the mosaic of cultures that have inhabited Iberia from prehistoric times till today. This contribution on the subterranean History of Spain traces the country’s heritage in the form of natural caves, troglodyte dwellings, mining, crypts, galleries in fortresses and castles, aqueducts, qanats, cellars, and other landmarks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0886-7798 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ubierna1998131 Serial 260  
Permanent link to this record
 

 
Author (down) Tziritis, E.; Aschonitis, V.; Balacco, G.; Daras, P.; Doulgeris, C.; Fidelibus, M.D.; Gaubi, E.; Gueddari, M.; Güler, C.; Hamzaoui, F.; others openurl 
  Title MEDSAL Project-Salinization of critical groundwater reserves in coastal Mediterranean areas: Identification, risk assessment and sustainable management with the use of integrated modelling and smart ICT tools Type Conference Article
  Year 2020 Publication EGU General Assembly Conference Abstracts Abbreviated Journal  
  Volume Issue Pages 2326  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tziritis2020medsal Serial 43  
Permanent link to this record
 

 
Author (down) Tujchneider, O.; Christelis, G.; Gun, J.V. der url  openurl
  Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
  Year 2013 Publication Environmental Development Abbreviated Journal  
  Volume 7 Issue Pages 6-16  
  Keywords Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management  
  Abstract Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-4645 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105  
Permanent link to this record
 

 
Author (down) Tröger, U.; Dias, C.L.; Guillaumon, J.R.; Iritani, M.A.; Külls, C.; Schuler, G. openurl 
  Title Remarks and new data about the recharge of the Guarani Aquifer System Type Conference Article
  Year 2004 Publication XXXIII IAH Congress, Abstracts, IAH, Mexico Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Troeger2004remarks Serial 59  
Permanent link to this record
 

 
Author (down) Tisherman, R.A.; Rossi, R.J.; Shonkoff, S.B.C.; DiGiulio, D.C. url  openurl
  Title Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 904 Issue Pages 166937  
  Keywords Groundwater, Oil & gas, Produced water, San Joaquin Valley, Uranium  
  Abstract In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are \textgreater400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tisherman_groundwater_2023 Serial 159  
Permanent link to this record
 

 
Author (down) Timsina, J.; Weerahewa, J. url  openurl
  Title Restoring ancient irrigation systems for sustainable agro-ecosystems development: Reflections on the special issue Type Journal Article
  Year 2023 Publication Agricultural Systems Abbreviated Journal  
  Volume 209 Issue Pages 103668  
  Keywords Ancient irrigation systems, Degradation, Sustainability, Sri Lanka  
  Abstract Humans have relied on agriculture to feed their communities for thousands of years. Irrigation is practiced in many different forms over the years in countries all over the world. Although modern irrigation systems have been developed, and are in use in many countries, ancient irrigation systems (AISs) have also played a major role in sustaining food production, especially in smallholder farming in least developed and developing countries. The editorial team of Agricultural Systems put out a call for a special issue on restoring AISs for sustainable agro-ecosystems development to capture ancient marvels of traditional irrigation technology across the world. The objectives of this special issue were to: (i) understand and analyse the hydrological and socio-economic networks anchored by AISs; (ii) explain the nature and sustainability of management of these systems in relation to local agro-ecosystems; (iii) analyse the implications of the AISs for land, soil and water quality, and agro-ecosystem services; (iv) qualitative and quantitative analysis of AISs, including bio-physical and bio-economic modelling of these systems; and (v) assess the feasibility of alternative technological, institutional and management strategies to enhance the productivity, profitability, and environmental sustainability of the systems. The overall goal of the special issue was to develop a useful repository for this information as well as to use the journal’s international reach to share this information with the agricultural systems research community and journal readership. This paper provides reflections of papers published in the special issue. The special issue resulted in twelve high quality original research articles and one review article from Asia, Africa and Europe. The findings from various papers revealed that the AISs have been degraded due to human interventions or the anthropogenic activities across the world. Various papers emphasized that as a corrective measure, there is a need for developing and implementing rehabilitation projects in these systems. Authors identified that appropriate policy interventions by the relevant authorities would be a major step towards such rehabilitation process. However, resetting the ecosystem structure of the AISs strictly towards their historical manifestation is neither required nor feasible in the present context as it would contradict the expectations of stakeholders from these systems. The knowledge generated through the special issue provides evidence-based information on various aspects of AISs. It helps aware governments, private sectors and development agencies for improved policy planning and decision making and for prioritizing the restoration, rehabilitation, and management of various AISs around the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Timsina2023103668 Serial 255  
Permanent link to this record
 

 
Author (down) Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A. url  openurl
  Title An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100998  
  Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS  
  Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234  
Permanent link to this record
 

 
Author (down) Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B. url  isbn
openurl 
  Title Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type Book Chapter
  Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal  
  Volume Issue Pages 213-234  
  Keywords Distribution, Heath impacts, Remediation techniques, Sources, Uranium  
  Abstract Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-443-18778-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152  
Permanent link to this record
 

 
Author (down) Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y. url  openurl
  Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
  Year 2014 Publication Hydrometallurgy Abbreviated Journal  
  Volume 150 Issue Pages 99-106  
  Keywords Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution  
  Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: