toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kumar, V.; Setia, R.; Pandita, S.; Singh, S.; Mitran, T. url  openurl
  Title Assessment of U and As in groundwater of India: A meta-analysis Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume 303 Issue Pages 135199  
  Keywords Arsenic, Geology, Groundwater, Health risk, Soil texture, Uranium  
  Abstract More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) \textgreater North Zone (37.7 μg/L) \textgreater South Zone (13.5 μg/L)\textgreater Central Zone (7.4 μg/L) \textgreater East Zone (5.7 μg/L) \textgreaterSoutheast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)\textgreaterCentral Zone (260.4 μg/L)\textgreaterNorth Zone (67.7 μg/L)\textgreaterEast Zone (60.3 μg/L)\textgreaterNorth-east zone (9.78 μg/L)\textgreaterWest zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ kumar_assessment_2022 Serial 161  
Permanent link to this record
 

 
Author Kurmanseiit, M.B.; Tungatarova, M.S.; Royer, J.-J.; Aizhulov, D.Y.; Shayakhmetov, N.M.; Kaltayev, A. url  openurl
  Title Streamline-based reactive transport modeling of uranium mining during in-situ leaching: Advantages and drawbacks Type Journal Article
  Year 2023 Publication Hydrometallurgy Abbreviated Journal  
  Volume 220 Issue Pages 106107  
  Keywords 3D modeling, In-situ leaching, Reactive transport model, Streamlines, Uranium recovery  
  Abstract Reactive transport modeling is known to be computationally intensive when applied to 3D problems. Transforming sequential computing on the computer processor units (CPU) into parallelized computation on the high-performance parallel graphic processor units (GPU) is a classical approach to increasing computational performance. Another complementary approach is to decompose a complex 3D modeling problem into a set of simpler 1D problems using streamline approaches which can be easily parallelized, therefore reducing computation time. This paper investigates solutions to the equations governing dissolution and transport using streamlines coupled with a parallelization approach. In addition, an analytical solution to the dissolution and transfer equations of uranium describing the In-Situ Leaching (ISL) mining recovery is found using an approximation series to the 2nd order. The analytical solution is compared to the 1D numerical resolution along the streamlines and to the 3D simulation results superimposed on the streamline. Both approaches give similar results with a relative error of \textless2 % (2%). The proposed methodology is then applied to a case study in which the classical 3D resolution is compared to the newly suggested streamline solution, demonstrating that the streamline approach increases computational performances by a factor ranging from hundred to thousand depending on the complexity of the grid-block model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ kurmanseiit_streamline-based_2023 Serial 190  
Permanent link to this record
 

 
Author Lach, P.; Cathelineau, M.; Brouand, M.; Fiet, N. url  openurl
  Title In-situ Isotopic and Chemical Study of Pyrite from Chu-Sarysu (Kazakhstan) Roll-front Uranium Deposit Type Journal Article
  Year 2015 Publication Procedia Earth and Planetary Science Abbreviated Journal  
  Volume 13 Issue Pages 207-210  
  Keywords LA-ICP-MS, pyrite, roll-front, SIMS, sulfur isotopy, traces elements, uranium  
  Abstract Pyrite is common in roll-front type uranium deposit in Chu-sarysu basin, Kazakhstan. Combined in-situ microstructural, isotopic and chemical analysis of pyrite indicates variation in precipitation conditions and in fluid composition. Broad-scale δ34S heterogeneity indicates a complex multi-facet evolution. First generation authigenic framboïdal aggregates are biogenic as demonstrated by the lowest δ34S values of -48‰ to -28‰. The latest generation pyrites are probably hydrothermal with greater δ34S variation (-30‰ to +12‰). This hydrothermal pyrite commonly displays variable enrichment of several trace elements especially As, Co and Ni. Strong variation in δ34S values and variable trace element enrichment is interpreted in terms of continuous variations in fluid composition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-5220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ lach_-situ_2015 Serial 182  
Permanent link to this record
 

 
Author Lapworth, D.J.; Brauns, B.; Chattopadhyay, S.; Gooddy, D.C.; Loveless, S.E.; MacDonald, A.M.; McKenzie, A.A.; Muddu, S.; Nara, S.N.V. url  openurl
  Title Elevated uranium in drinking water sources in basement aquifers of southern India Type Journal Article
  Year 2021 Publication Applied Geochemistry Abbreviated Journal  
  Volume 133 Issue Pages 105092  
  Keywords Anthropogenic, Drinking waters, Geogenic, India, Speciation, Uranium  
  Abstract Groundwater resources in the crystalline basement complex of India are crucial for supplying drinking water in both rural and urban settings. Groundwater depletion is recognised as a challenge across parts of India due to over-abstraction, but groundwater quality constraints are perhaps even more widespread and often overlooked at the local scale. Uranium contamination in basement aquifers has been reported in many parts of India, locally exceeding WHO drinking water guideline values of 30 μg/L and posing a potential health risk. In this study 130 water samples were collected across three crystalline basement catchments to assess hydrochemical, geological and anthropogenic controls on uranium mobility and occurrence in drinking water sources. Groundwaters with uranium concentrations exceeding 30 μg/L were found in all three study catchments (30% of samples overall), with concentrations up to 589 μg/L detected. There appears to be a geological control on the occurrence of uranium in groundwater with the granitic gneiss of the Halli and Bengaluru study areas having higher mean uranium concentrations (51 and 68 μg/L respectively) compared to the sheared gneiss of the Berambadi catchment (6.4 μg/L). Uranium – nitrate relationships indicate that fertiliser sources are not a major control on uranium occurrence in these case studies which include two catchments with a long legacy of intense agricultural land use. Geochemical modelling confirmed uranium speciation was dominated by uranyl carbonate species, particularly ternary complexes with calcium, consistent with uranium mobility being affected by redox controls and the presence of carbonates. Urban leakage in Bengaluru led to low pH and low bicarbonate groundwater hydrochemistry, reducing uranium mobility and altering uranium speciation. Since the majority of inhabitants in Karnataka depend on groundwater abstraction from basement aquifers for drinking water and domestic use, exposure to elevated uranium is a public health concern. Improved monitoring, understanding and treatment of high uranium drinking water sources in this region is essential to safeguard public health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ lapworth_elevated_2021 Serial 147  
Permanent link to this record
 

 
Author Lartigue, J.E.; Charrasse, B.; Reile, B.; Descostes, M. url  openurl
  Title Aqueous inorganic uranium speciation in European stream waters from the FOREGS dataset using geochemical modelling and determination of a U bioavailability baseline Type Journal Article
  Year 2020 Publication Chemosphere Abbreviated Journal  
  Volume 251 Issue Pages 126302  
  Keywords Bioavailable fraction, Geochemical mapping / baseline, Modelling, Speciation, Stream water, Uranium  
  Abstract The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 μg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 μg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10−3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ lartigue_aqueous_2020 Serial 141  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: