toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N. url  openurl
  Title Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
  Year 2019 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 109 Issue Pages 50-78  
  Keywords Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium  
  Abstract The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124  
Permanent link to this record
 

 
Author Salbu, B. url  openurl
  Title Preface: uranium mining legacy issue in Central Asia Type Journal Article
  Year 2013 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 123 Issue Pages 1-2  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ salbu_preface_2013 Serial 125  
Permanent link to this record
 

 
Author Vogel, J.C.; Talma, A.S.; Heaton, T.H.E.; Kronfeld, J. url  openurl
  Title Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer Type Journal Article
  Year 1999 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 66 Issue 1 Pages 269-276  
  Keywords redox changes in aquifer, sandstone-type uranium deposit, South Africa, uranium series  
  Abstract The solubility of uranium in groundwater is very sensitive to changes in redox conditions. Many secondary (sandstone-type) uranium deposits have been formed when soluble U has precipitated after encountering reducing conditions in the subsurface. In the groundwater of the Uitenhage Aquifer (Cape Province, South Africa), 238U-series isotopes were used to assist in studying the history of the reducing barrier. Uranium isotopes were used to determine the present position of the barrier. Radium and radon were used to evaluate the path of migration that the front of the oxygen depletion zone has taken over the past 105 years. During this time the reducing barrier has moved, leaving in its wake a trail of U in various stages of secular equilibrium with its daughter 230Th. The 226Ra daughter of 230Th is not very mobile. Its growth upon the aquifer wall is reflected in the Rn content of the water. This in turn, due to the relatively great age of the water, indicates the extent of the 230Th ingrowth (from precipitated U) that took place before the barrier migrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ vogel_evaluating_1999 Serial 126  
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S. url  openurl
  Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
  Year 2020 Publication Environmental Advances Abbreviated Journal  
  Volume 2 Issue Pages 100020  
  Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium  
  Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-7657 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127  
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z. url  openurl
  Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
  Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal  
  Volume 15 Issue 3 Pages 83-90  
  Keywords Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond  
  Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-8507 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: