toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, J.; Pang, Z.; Liu, Y.; Hu, S.; Jiang, W.; Tian, L.; Yang, G.; Jiang, Y.; Jiao, X.; Tian, J. url  openurl
  Title Changes in groundwater dynamics and geochemical evolution induced by drainage reorganization: Evidence from 81Kr and 36Cl dating of geothermal water in the Weihe Basin of China Type Journal Article
  Year 2023 Publication Earth and Planetary Science Letters Abbreviated Journal  
  Volume 623 Issue Pages (down) 118425  
  Keywords Kr dating, Cl dating, Geothermal water, Groundwater dynamics, Weihe basin  
  Abstract 81Kr and 36Cl can both be used to date groundwater beyond the dating range of 14C. 81Kr usually provides reliable groundwater ages because it has uniform initial distribution and negligible subsurface generation, while 36Cl is commonly influenced by subsurface sources or “dead” chloride dissolution. Therefore, the combined use of 81Kr and 36Cl could provide clues on the evolution history of groundwater. In the present study, we performed 36Cl and 81Kr dating of geothermal water in Weihe Basin of China and interpreted the possible cause of disagreement. Two distinct water masses were identified with distinctive isotopic signals: groundwater with significant δ18O shifts (up to −2.0‰), dissolved dead Cl and ages < 1.0 Ma (Cluster A), and older water with little δ18O shifts, negligible dissolved Cl and ages >1.0 Ma (Cluster B). The results confirm the eastward flow path of Cluster B to the Ancient Sanmen Lake with an increasing trend of Cl concentration and age. Modern recharge from the mountains flows to the basin center with intense interaction between water and carbonate under respective reservoir temperatures (100 ∼ 130 °C). These waters flow through the saline stratum emerging from the spillover of the Ancient Sanmen Lake, resulting in higher dead Cl dissolution. A significant linear relationship is observed with the older end-member of ∼1.3Ma under the topographically-driven faster circulation effect. 81Kr ages seem to support the hypothesis that the birth of the modern Yellow River was at about 1.0–1.3 Ma. We inferred the drainage reorganization from the Ancient Sanmen Lake to the modern Yellow River since the Mid-Pleistocene Transition induced the change in groundwater dynamics as well as its chemical evolution. The excavation of the Ancient Sanmen Lake and the accentuated incision of the Weihe River induced groundwater gradient, and therefore the recharge from precipitation from both slopes of the Qinling Mountains in the south and the Beishan Mountains in the north. Our results highlight the effects of dead Cl on 36Cl dating and demonstrate the significant impact of catchment reorganization on groundwater dynamics and its chemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Li2023118425 Serial 212  
Permanent link to this record
 

 
Author Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T. url  openurl
  Title Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 344 Issue Pages (down) 118260  
  Keywords Flood, Urban planning, Sustainable cities, LID, Natural-based solutions, Alexandria  
  Abstract Cities have experienced rapid urbanization-induced harsh climatic events, especially flooding, inevitably resulting in negative and irreversible consequences for urban resilience and endangering residents’ lives. Numerous studies have analyzed the effects of anthropogenic practices (land use changes and urbanization) on flood forecasting. However, non-structural mitigation’s effectiveness, like Nature-Based Solutions (NBS), has yet to receive adequate attention, particularly in the Middle East and North Africa (MENA) region, which have become increasingly significant and indispensable for operationalizing cities efficiently. Therefore, our study investigated the predictive influence of incorporating one of the most common NBS strategies called low-impact development tools (LID) (such as rain gardens, bio-retention cells, green roofs, infiltration trenches, permeable pavement, and vegetative swale) during the urban planning of Alexandria, Egypt, which experiences the harshest rainfall annually and includes various urban patterns. City characteristics-dependent 14 LID scenarios were simulated with recurrence intervals ranging from 2 to 100 years using the LID Treatment Train Tool (LID TTT), depending on calibrated data from 2015 to 2020, by the Nash-Sutcliffe efficiency index and deterministic coefficient, and root-mean-square error with values of 0.97, 0.91, and 0.31, respectively. Our findings confirmed the significant effectiveness of combined LID tools on total flood runoff volume reduction by 73.7%, revealing that different urban patterns can be used in flood-prone cities, provided LID tools are considered in city planning besides grey infrastructure to achieve optimal mitigation. These results, which combined multiple disciplines and were not explicitly mentioned in similar studies in developing countries, may assist municipalities’ policymakers in planning flood-resistant, sustainable cities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mabrouk2023118260 Serial 232  
Permanent link to this record
 

 
Author Baptista, V.S.G.; Coelho, V.H.R.; Bertrand, G.F.; Silva, G.B.L. da; Caicedo, N.O.L.; Montenegro, S.M.G.L.; Stefan, C.; Glass, J.; Heim, R.; Conrad, A.; Almeida, C. das N. url  openurl
  Title Rooftop water harvesting for managed aquifer recharge and flood mitigation in tropical cities: Towards a strategy of co-benefit evaluations in João Pessoa, northeast Brazil Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 342 Issue Pages (down) 118034  
  Keywords Flood control, Groundwater, Injection well, Stormwater management, Urban drainage, Aquifer storage and recovery  
  Abstract Intense urbanisation in many coastal areas has led to intensification of groundwater consumption, while reducing permeable areas and increasing the frequency and magnitude of flooding. Among the potential strategies to compensate for these adverse effects, which are expected to become worse as a result of climate change, rooftop rainwater harvesting (RWH) in combination with managed aquifer recharge (MAR), may be indicated. This work investigated the performance of different configurations of such a system, tested as a twofold sustainable stormwater and domestic water management tool in a tropical metropole (João Pessoa, Brazil). This area located over a sedimentary aquifer system illustrates the water security challenges of densely urbanised areas in southern cities. To that end, several configurations of rooftop catchments and storage volumes were evaluated, by simulating a MAR-RWH system connected to the regional unconfined aquifer (Barreiras Formation) through a 6″ diameter injection well. Rainfall-runoff-recharge processes and water balances were simulated using monitored high-temporal resolution rainfall data. The results showed that catchments ranging from 180 to 810 m2, connected to tanks from 0.5 to 30.0 m³, are the optimal solutions in terms of efficient rainwater retention and peak flow reduction. These solutions provided mean annual estimates of aquifer recharge between 57 and 255 m³/yr from 2004 to 2019. The results of this study highlight the opportunity for MAR schemes to reconcile stormwater management and water supply goals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Baptista2023118034 Serial 237  
Permanent link to this record
 

 
Author Custódio, D.A.; Ghisi, E. url  openurl
  Title Impact of residential rainwater harvesting on stormwater runoff Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 326 Issue Pages (down) 116814  
  Keywords Rainwater harvesting, Residential buildings, Stormwater runoff, Floods, Computer simulation  
  Abstract Population increase, climate change and soil impermeability are factors causing floods in large urban centres. Such places also always have water shortage problems. This research aims to evaluate the influence of rainwater harvesting in residential buildings on stormwater in a basin located in southern Brazil (Rio Cachoeira Basin). Urbanised and non-urbanised areas, soil types, curve numbers and time of concentration of each sub-basin were taken into account. Through the HEC-HMS programme, it was possible to calculate hydrographs for the base scenario (when there is no rainwater harvesting). Then, rainwater tanks for the residential buildings were sized using the computer programme Netuno. In the second scenario, there is rainwater harvesting in all residential buildings. Thus, the hydrographs for the second scenario were also calculated. The peak flow reduction potentials for the sub-basins ranged from 2.7% to 14.3%. The highest percentage (14.3%) did not occur in the sub-basin with the most extensive roof area; such highest peak flow reduction occurred in Bom Retiro sub-basin. In Bom Retiro sub-basin, there are more houses than multi-storey residential buildings. Even when considering the full potential of rainwater harvesting for roof areas of all existing buildings in the Rio Cachoeira Basin, the average potential reduction in peak flow was 7.2%. The conclusion is that rainwater tanks in residential buildings have little influence on stormwater runoff, and the stormwater runoff will be less affected when the area of the hydrographic basin is larger. Thus, the reduction in peak flows is insignificant when considering the flooding in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Custodio2023116814 Serial 231  
Permanent link to this record
 

 
Author Jamali, B.; Bach, P.M.; Deletic, A. url  openurl
  Title Rainwater harvesting for urban flood management – An integrated modelling framework Type Journal Article
  Year 2020 Publication Water Research Abbreviated Journal  
  Volume 171 Issue Pages (down) 115372  
  Keywords Rainwater harvesting tanks, Urban flood simulation, Rapid flood inundation model, Urban flood risk mitigation  
  Abstract It is well known that rainwater harvesting (RWH) can augment water supply and reduce stormwater pollutant discharges. Due to the lack of continuous 2D modelling of urban flood coverage and its associated damage, the ability of RWH to reduce urban flood risks has not been fully evaluated. Literature suggests that small distributed storage spaces using RWH tanks will reduce flood damage only during small to medium flooding events and therefore cumulative assessment of their benefits is needed. In this study we developed a new integrated modelling framework that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks. The framework includes a continuous mass balance simulation model that considers antecedent rainfall conditions and water demand/usage of tanks and predicts the available storage prior to each storm event. To do so, this model couples a rainfall-runoff tank storage model with a detailed stochastic end-use water demand model. The available storage capacity of tanks is then used as a boundary condition for the novel rapid flood simulation model. This flood model was developed by coupling the U.S. EPA Storm Water Management Model (SWMM) to the Cellular-Automata Fast Flood Evaluation (CA-ffé) model to predict the inundation depth caused by surcharges over the capacity of the drainage network. The stage-depth damage curves method was used to calculate time series of flood damage, which are then directly used for flood risk and cost-benefit analysis. The model was tested through a case study in Melbourne, using a recorded rainfall time series of 85 years (after validating the flood model against 1D-2D MIKE-FLOOD). Results showed that extensive implementation of RWH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent. Availability of storage space and temporal distribution of rainfall within an event were important factors affecting tank performance for flood reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jamali2020115372 Serial 239  
Permanent link to this record
 

 
Author Pree, T.A.D. url  openurl
  Title The politics of baselining in the Grants uranium mining district of northwestern New Mexico Type Journal Article
  Year 2020 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 268 Issue Pages (down) 110601  
  Keywords Critical stakeholder analysis, Environmental cleanup, Environmental monitoring, Mining reclamation/remediation/restoration, Politics of baselining  
  Abstract During the second half of the twentieth century, northwestern New Mexico served as the primary production site for one of the world’s largest nuclear arsenals. From 1948 to 1970 the “Grants uranium district” provided almost half of the total uranium ore accumulated by the United States federal government for the production of nuclear weapons, in addition to becoming a national source for commercial nuclear energy from the late 1960s to the early 1990s. By the twenty-first century, after a prolonged period of economic decline that began in the late 1970s, all uranium mining and milling in New Mexico had ceased, leaving a legacy of environmental health impacts. What was once referred to as “The Uranium Capital of the World” now encompasses over a thousand abandoned uranium mines and seven massive uranium mill tailings piles, which are associated with airborne and soil contamination as well as groundwater plumes of uranium and other contaminants of concern, in a landscape that has been fractured by underground mine workings and punctured by thousands of exploratory boreholes. This article presents an ethnographic study of the diverse forms of expertise involved in monitoring and managing the mine waste and mill tailings. Drawing from over two years of ethnographic research, I describe the relationship between different stakeholders from local communities, government agencies, and transnational mining corporations as they deliberate about the possibility of cleaning up the former mining district. My thesis is that the possibility of cleaning up the Grants district hinges on the “politics of baselining”—a term I introduce to describe the relationship between stakeholders and their competing environmental models and hydrogeological theories; each accounts for a different geological past prior to mining that can be deemed “natural,” as the background against which to measure the anthropogenic impacts from mining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pree_politics_2020 Serial 151  
Permanent link to this record
 

 
Author Romeo, N.; Mabry, J.; Hillegonds, D.; Kainz, G.; Jaklitsch, M.; Matsumoto, T. url  openurl
  Title Developments of a field gas extraction device and krypton purification system for groundwater radio-krypton dating at the IAEA Type Journal Article
  Year 2022 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 189 Issue Pages (down) 110450  
  Keywords  
  Abstract The long-lived radio-krypton isotope 81Kr (t1/2 = 2.29 × 105 yr) is an ideal tracer for old groundwater age dating in the range of 105–106 years which goes beyond the reach of radio-carbon (14C) age dating. Analytical breakthrough made over the last two decades in Atom Trap Trace Analysis (ATTA) has enabled the use of this isotope with extremely low abundance (81Kr/Kr = 6 × 10−13) to be used as a practical dating tool for very old groundwater. The International Atomic Energy Agency aims to provide this new isotope tool for better groundwater resource management of Member States and developed a field sampling device to collect dissolved gas samples from groundwater and a system to separate and purify trace amounts of krypton from the gas samples for the ATTA analysis. The design, setup and performances of our sampling and purification systems are described here. Our system can produce a high purity aliquot of about 5 μL of krypton from 5 L of air sample (recovery yield of >90%). The samples made by our system were confirmed to be acceptable for the ATTA analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Romeo2022110450 Serial 214  
Permanent link to this record
 

 
Author Belz, L.; Schüller, I.; Wehrmann, A.; Köster, J.; Wilkes, H. url  openurl
  Title The leaf wax biomarker record of a Namibian salt pan reveals enhanced summer rainfall during the Last Glacial-Interglacial Transition Type Journal Article
  Year 2020 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume 543 Issue Pages (down) 109561  
  Keywords -Alkanes, -Alkanols, Late Quaternary, Organic geochemistry, Palaeohydrology, Southern Africa  
  Abstract Conventional continental geoarchives are rarely available in arid southern Africa. Therefore, palaeoclimate data in this area are still patchy and late Quaternary climate development is only poorly understood. In the western Kalahari, salt pans (playas, ephemeral lakes) are common and can feature quasi-continuous sedimentation. This study presents the first climate-related biomarker record using sediments from the Omongwa Pan, a Kalahari salt pan located in eastern Namibia. Our approach to reconstruct vegetation and hydrology focuses on biogeochemical bulk parameters and plant wax-derived lipid biomarkers (n-alkanes, n-alkanols, and fatty acids) and their compound-specific carbon and hydrogen isotopic compositions. The presented record reaches back to 27 ka. During the glacial, rather low δ2H values of n-alkanes and low sediment input exclude a strong influence of winter rainfall. n-Alkane and n-alkanol distributions and δ13C values of n-hentriacontane (n-C31) indicate a shift to a vegetation with a higher proportion of C4 plants at the end of the Last Glacial Maximum until the end of Heinrich Stadial I (ca. 18–14.8 ka), which we interpret to indicate an abrupt excursion to a short wetter period likely to be caused by a temporary southward shift of the Intertropical Convergence Zone. Shifts in δ2H values of n-C31 and plant wax parameters give evidence for changes to drier conditions during early Holocene. Comparison of this dataset with representative continental records from the region points to a major influence of summer rainfall at Omongwa Pan during the regarded time span and demonstrates the potential of southern African salt pans as archives for biomarker-based climate proxies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ belz_leaf_2020 Serial 104  
Permanent link to this record
 

 
Author Stavi, I.; Eldad, S.; Xu, C.; Xu, Z.; Gusarov, Y.; Haiman, M.; Argaman, E. url  openurl
  Title Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev Type Journal Article
  Year 2024 Publication Catena Abbreviated Journal  
  Volume 234 Issue Pages (down) 107588  
  Keywords Geo-archaeology, Hydrological connectivity, Hydrological modelling, Runoff harvesting, Soil and water conservation, Watershed management  
  Abstract Ancient stone terrace walls aimed at harvesting water runoff and facilitating crop production are widespread across the drylands of the Middle East and beyond. In addition to retaining the scarce water resource, the terrace walls also conserve soil and thicken its profile along ephemeral stream channels (wadis) by decreasing fluvial connectivity and mitigating erosional processes. In this study, we created hydrological models for three wadis with ancient stone terrace walls in the arid northern Negev of Israel, where the predominant geophyte species is Asphodelus ramosus L. A two-dimensional (2D) rain-on-grid (RoG) approach with a resolution of 2 m was used to simulate the rain events with return periods of 10, 20, 50, and 99 % (10-y, 5-y, 2-y, and yearly, respectively) based on the Intensity-Duration-Frequency rain curves for the region. To evaluate the effect of stone terrace walls on fluvial hydrology and geomorphology, the ground level was artificially elevated by 20 cm at the wall locations in a digital terrain model (DTM), using the built-in HEC-RAS 2D terrain modification tool. Our results showed that the terraced wadis have a high capacity to mitigate runoff loss, but a lesser capacity to delay the peak flow. Yet, for all rainstorm return periods, peak flow mitigation was positively related to the number of terrace walls along the stream channel. Field surveys in two of the studied wadis demonstrated that the A. ramosus clones were found in proximity to the stone terrace walls, presumably due to the greater soil–water content there. The results thus suggest that the terrace walls provide improved habitat conditions for these geophytes, supporting their growth and regulating their distribution along the wadi beds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Stavi2024107588 Serial 229  
Permanent link to this record
 

 
Author Singh, A.; Patel, S.; Bhadani, V.; Kumar, V.; Gaurav, K. url  openurl
  Title AutoML-GWL: Automated machine learning model for the prediction of groundwater level Type Journal Article
  Year 2024 Publication Engineering Applications of Artificial Intelligence Abbreviated Journal  
  Volume 127 Issue Pages (down) 107405  
  Keywords AutoML, Bayesian optimisation, Groundwater, Machine learning  
  Abstract Predicting groundwater levels is pivotal in curbing overexploitation and ensuring effective water resource governance. However, groundwater level prediction is intricate, driven by dynamic nonlinear factors. To comprehend the dynamic interaction among these drivers, leveraging machine learning models can provide valuable insights. The drastic increase in computational capabilities has catalysed a substantial surge in the utilisation of machine learning-based solutions for effective groundwater management. The performance of these models highly depends on the selection of hyperparameters. The optimisation of hyperparameters is a complex process that often requires application-specific expertise for a skillful prediction. To mitigate the challenge posed by hyperparameter tuning’s problem-specific nature, we present an innovative approach by introducing the automated machine learning (AutoML-GWL) framework. This framework is specifically designed for precise groundwater level mapping. It seamlessly integrates the selection of best machine learning model and adeptly fine-tunes its hyperparameters by using Bayesian optimisation. We used long time series (1997-2018) data of precipitation, temperature, evaporation, soil type, relative humidity, and lag of groundwater level as input features to train the AutoML-GWL model while considering the influence of Land Use Land Cover (LULC) as a contextual factor. Among these input features, the lag of groundwater level emerged as the most relevant input feature. Once the model is trained, it performs well over the unseen data with a strong correlation of coefficient (R = 0.90), low root mean square error (RMSE = 1.22), and minimal bias = 0.23. Further, we compared the performance of the proposed AutoML-GWL with sixteen benchmark algorithms comprising baseline and novel algorithms. The AutoML-GWL outperforms all the benchmark algorithms. Furthermore, the proposed algorithm ranked first in Friedman’s statistical test, confirming its reliability. Moreover, we conducted a spatial distribution and uncertainty analysis for the proposed algorithm. The outcomes of this analysis affirmed that the AutoML-GWL can effectively manage data with spatial variations and demonstrates remarkable stability when faced with small uncertainties in the input parameters. This study holds significant promise in revolutionising groundwater management practices by establishing an automated framework for simulating groundwater levels for sustainable water resource management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-1976 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ singh_automl-gwl_2024 Serial 168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: