toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Weerahewa, J.; Timsina, J.; Wickramasinghe, C.; Mimasha, S.; Dayananda, D.; Puspakumara, G. url  openurl
  Title Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services Type Journal Article
  Year 2023 Publication Agricultural Systems Abbreviated Journal  
  Volume 205 Issue Pages (down) 103580  
  Keywords Agriculture, Climate change, Hydrology, Village tank cascade system, Tank irrigation, Watershed  
  Abstract CONTEXT Ancient irrigation systems (AISs) have been providing a multitude of ecosystem services to rural farming and urban communities in Asia and Africa, especially in arid and semi-arid climatic areas with low rainfall. Many AISs, however have now been degraded. A systematic analysis of AISs on their typologies, causes of degradation, and their ecosystem services is lacking. OBJECTIVE The objective of this review was to synthesize the knowledge on AISs on their typologies, status and causes of degradation, ecosystem services and functions, and identify gaps in research in Asia and Africa. METHOD A critical review of peer-reviewed journal papers, conference and workshop proceedings, book chapters, grey literature, and country reports was conducted. Qualitative and quantitative information from journal papers were used to conceptualize the typologies and analyze the status and causes of degradation, and ecosystems services and functions provided by the AISs. RESULTS AND CONCLUSION Based on the review, we classified AISs into three groups by source of irrigation water: Rainwater harvesting system (RHS) with small reservoirs, ground water based system, and floodwater based system. The RHSs, which used to receive reliable rainfall and managed by well cohesive social organizations for their maintenance and functioning in past, have now been silting due to extreme rainfall pattern and breakdown of the cohesive organizations in recent decades. In ground water based systems, indiscriminate development of deep tube wells causing siltation of channels has been a major challenge. In floodwater irrigation systems, irregular rainfall in the highlands and the breakage of irrigation structures by destructive floods were the main causes of degradation. Lack of maintenance and increased soil erosion, inadequate skilled manpower, and declining support from the government for repair and maintenance were the main causes of degradation of all AISs. The main ecosystem service provided by all AISs is water for agriculture. In tank- and pond-based systems, fish farming is also practiced. Tank irrigation systems provide various types of provisioning, regulatory, cultural and supporting services, especially in India and Sri Lanka. Ground water based systems provide water for domestic purposes and various cultural services. Floodwater based systems provide water for power generation and wildlife habitat maintenance and help in flood control. SIGNIFICANCE The knowledge generated through the review provide evidence-based information, and help aware governments, private sectors and development agencies for improved policy planning and decision making, and prioritizing the restoration, rehabilitation, and management of various AISs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Weerahewa2023103580 Serial 275  
Permanent link to this record
 

 
Author Alexander, A.C.; Ndambuki, J.M. url  openurl
  Title Impact of mine closure on groundwater resource: Experience from Westrand Basin-South Africa Type Journal Article
  Year 2023 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 131 Issue Pages (down) 103432  
  Keywords Acid mine drainage, Groundwater quality, Mine closure, Spatio-temporal variation, Westrand Basin  
  Abstract The mining sector is at the edge of expanding to cater for natural resources that are much needed for technological development and manufacturing. Mushrooming of mines will consequently increase the number of mines closure. Moreover, mines closure have adverse impact on the environment at large and specifically on water resources. This study analyses historical groundwater quality parameters in mine intensive basin of Westrand Basin (WRB) to understand the status of groundwater quality in relation to mining activities and mine closure. Geographic information system (GIS) was used to map the spatio-temporal variation of groundwater quality in the basin and groundwater quality index (GQI) to evaluate its status. The coefficient of variation (CV) was applied to understand the stability of groundwater quality after the mine closure. Results indicated unstable and altered trend with increasing levels of acidity and salts concentration around the mines vicinity following the mine closure. The resultant maps indicated a significant deterioration of groundwater quality around the WRB with concentrations decreasing downstream. Obtained average GQI for the study period of 1996–2015 suggested a moderate groundwater quality at a range of GQI = 64–73. The CV indicated varying water quality at CV \textgreater 30% suggesting presence of source of contamination. Observed groundwater quality trends in Westrand basin suggested that mines closure present potential threat on groundwater quality and thus, a need for a robust mine closure plan and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ alexander_impact_2023 Serial 134  
Permanent link to this record
 

 
Author Mathuthu, M.; Uushona, V.; Indongo, V. url  openurl
  Title Radiological safety of groundwater around a uranium mine in Namibia Type Journal Article
  Year 2021 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 122 Issue Pages (down) 102915  
  Keywords Groundwater, ICP-MS, Radiological hazard, Uranium mining  
  Abstract Uranium mining activities produce the main element used in nuclear energy production. However, it can also negatively affect the environment including groundwater by release of residues or effluent containing radioactive elements. The study investigated the concentration and radiological hazard of uranium in groundwater and seepage water from the tailings of a uranium mine in Namibia. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to assess the concentration of uranium in the groundwater and seepage water and the radiological hazards were determined. The radiological hazard indices Radium equivalent activity (Raeq), Absorbed dose (D), Annual Effective Dose equivalent (AEDE), External hazard index (Hex) and Internal hazard index (Hin) were determined and compared to limits recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The calculated average value of D and Hin of groundwater is 108.11nGyh−1 and 1.26, respectively and are above the UNSCEAR values (55 nGyh−1 and 1). Further, the average values of Raeq, AEDE and Hex were below the recommended values. The isotopic ratio of uranium radionuclides in groundwater indicates that the uranium in the sampled groundwater is below 1 suggesting it is not natural uranium present but a possible contamination from the mine seepage. The radiological hazard parameters of the seepage water were above the recommended values and thus pose a radiation risk to human and environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mathuthu_radiological_2021 Serial 160  
Permanent link to this record
 

 
Author Uugulu, S.; Wanke, H. url  openurl
  Title Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia Type Journal Article
  Year 2020 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 116 Issue Pages (down) 102844  
  Keywords Chloride mass balance, Groundwater recharge, Isotopic values, Precipitation gradient  
  Abstract The quantification of groundwater resources is essential especially in water scarce countries like Namibia. The chloride mass balance (CMB) method and isotopic composition were used in determining groundwater recharge along a precipitation gradient at three sites, namely: Tsumeb (600 mm/a precipitation); Waterberg (450 mm/a precipitation) and Kuzikus/Ebenhaezer (240 mm/a precipitation). Groundwater and rainwater were collected from year 2016–2017. Rainwater was collected monthly while groundwater was collected before, during and after rainy seasons. Rainwater isotopic values for δ18O and δ2H range from −10.70 to 6.10‰ and from −72.7 to 42.1‰ respectively. Groundwater isotopic values for δ18O range from −9.84 to −5.35‰ for Tsumeb; from −10.85 to −8.60‰ for Waterberg and from −8.24 to −1.56‰ for Kuzikus/Ebenhaezer, while that for δ2H range from −65.6 to −46.7‰ for Tsumeb; −69.4 to −61.2‰ for Waterberg and −54.2 to −22.7‰ for Kuzikus/Ebenhaezer. Rainwater scatters along the GMWL. Rainwater collected in January, February and March are more depleted in heavy isotopes than those in November, December, April and May. Waterberg groundwater plots on the GMWL which indicates absence of evaporation. Tsumeb groundwater plots on/close to the GMWL with an exception of groundwater from the karst Lake Otjikoto which is showing evaporation. Groundwater from Kuzikus/Ebenhaezer shows an evaporation effect, probably evaporation occurs during infiltration since it is observed in all sampling seasons. All groundwater from three sites plot in the same area with rainwater depleted in stable isotopic values, which could indicates that recharge only take place during January, February and March. CMB method revealed that Waterberg has the highest recharge rate ranging between 39.1 mm/a and 51.1 mm/a (8.7% – 11.4% of annual precipitation), Tsumeb with rates ranging from 21.1 mm/a to 48.5 mm/a (3.5% – 8.1% of annual precipitation), and lastly Kuzikus/Ebenhaezer from 3.2 mm/a to 17.5 mm/a (1.4% – 7.3% of annual precipitation). High recharge rates in Waterberg could be related to fast infiltration and absence of evaporation as indicated by the isotopic ratios. Differences in recharge rates cannot only be attributed to the precipitation gradient but also to the evaporation rates and the presence of preferential flow paths. Recharge rates estimated for these three sites can be used in managing the savannah aquifers especially at Kuzikus/Ebenhaezer where evaporation effect is observed that one can consider rain harvesting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uugulu_estimation_2020 Serial 99  
Permanent link to this record
 

 
Author Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication Urban Climate Abbreviated Journal  
  Volume 51 Issue Pages (down) 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages (down) 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Ibrahim, A.S.; Zayed, I.S.A.; Abdelhaleem, F.S.; Afify, M.M.; Ahmed, A.; Abd-Elaty, I. url  openurl
  Title Identifying cost-effective locations of storage dams for rainfall harvesting and flash flood mitigation in arid and semi-arid regions Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages (down) 101526  
  Keywords Flash flood, Morphometric parameters, GIS, Cost-effective, Wadi Tayyibah, Dams  
  Abstract Study region Wadi Tayyibah is located in south Sinai, Egypt, in a region called Abou Zenima, and it is used to develop this study. Study focus Flash floods tremendously impact many facets of human life due to their destructive consequences and the costs associated with mitigating efforts. This study aims to evaluate the harvesting of Runoff by delineating the watersheds using the Hydrologic Engineering Center-1 (HEC-1) model and ArcGIS software in trying to benefit from it in different ways. All morphometric parameters of the basin were considered, and the risk degree of the different sub-basins was determined. The suitable locations of dams were identified using a Geographical Information System (GIS) using the basin’s morphometric characteristics. New hydrological insights for the region The study proposed a total number of eight dams, including five dams that were recommended for sub-basin (1) and three dams in sub-basin (4), while sub-basins (2) and (3) are not suitable locations to build dams according to the contour map of Wadi Tayyibah. Results indicate that, based on the constructed flash flood hazard maps and the basin’s detailed morphometric characteristics, the best locations of dams are Dam (3) in sub-basin (1) and Dam (7) in sub-basin (4), where the runoff volume reached 3.13 million cubic meters (Mm3) and 5.56 Mm3 for return period 100, respectively. This study is useful for decision-makers and designers for using morphometric parameters and flash flood hazard degree maps to select dam locations. Also, the cost-benefit analysis for using the morphometric parameters is required to be investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ibrahim2023101526 Serial 238  
Permanent link to this record
 

 
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T. url  openurl
  Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
  Year 2023 Publication Geoscience Frontiers Abbreviated Journal  
  Volume 14 Issue 2 Pages (down) 101494  
  Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation  
  Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-9871 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143  
Permanent link to this record
 

 
Author French, K. url  openurl
  Title Indigenous knowledge, water management, and learning from our collective past Type Journal Article
  Year 2022 Publication Journal of Anthropological Archaeology Abbreviated Journal  
  Volume 68 Issue Pages (down) 101466  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-4165 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ French2022101466 Serial 253  
Permanent link to this record
 

 
Author Zaeri, A.; Mohammadi, Z.; Rezanezhad, F. url  openurl
  Title Determining the source and mechanism of river salinity: An integrated regional study Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 47 Issue Pages (down) 101411  
  Keywords River salinity, Salinization mechanism, Isotope, Halite brine, River sinuosity  
  Abstract Study region Zohreh River Basin, Southwest Iran Study focus The salinity of Zohreh River sharply increases in three salinity zones (SZs) along the river named SZ1, SZ2 (the focus of this study), and SZ3. Determining the salinity sources and salinization mechanism using an integrated approach including geological, hydrochemical, isotopic, geophysical, river sinuosity and hydrocarbon analysis are the main objectives of this study. The study focuses on the combination of evidence of regional-scale (i.e., river sinuosity and seismic data) and small-scale (i.e., drilling core analysis). New hydrologic insights for the region Among several known sources of river salinity, it was found that the water quality of the Zohreh River is mainly threatened by the salt-bearing Gachsaran Formation and oil-field brine. It is concluded that halite brine and oil-field brine simultaneously cause the salinization in SZ2, and their contributions were delineated to be 95% and 5%, respectively. The lack of reliable geological evidence to support halite dissolution in surficial layers by circulating waters suggests the possibility of a deep source of halite brine in SZ2. The results revealed that deep halite brine of the salt layers of Gachsaran Formation is mainly responsible for the salinization of SZ2. The mechanism of deep brine penetration to the river through the hidden fault failures detected by the combination of river sinuosity analysis and geophysical data for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zaeri2023101411 Serial 251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: