toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benito, G.; Rohde, R.; Seely, M.; Külls, C.; Dahan, O.; Enzel, Y.; Todd, S.; Botero, B.; Morin, E.; Grodek, T. url  doi
openurl 
  Title Management of alluvial aquifers in two southern African ephemeral rivers: implications for IWRM Type Journal Article
  Year 2010 Publication Water Resources Management Abbreviated Journal  
  Volume 24 Issue 4 Pages (down) 641-667  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Benito2010management Serial 25  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages (down) 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages (down) 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265  
Permanent link to this record
 

 
Author Zeng, S.; Song, J.; Sun, B.; Wang, F.; Ye, W.; Shen, Y.; Li, H. url  openurl
  Title Seepage characteristics of the leaching solution during in situ leaching of uranium Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 2 Pages (down) 566-574  
  Keywords In situ leaching, Leaching solution viscosity, Seepage characteristics, Seepage pressure, Uranium-bearing sandstone  
  Abstract Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_seepage_2023 Serial 211  
Permanent link to this record
 

 
Author Davila, P.; Külls, C. openurl 
  Title Reliability of current CFC data for age dating of water Type Conference Article
  Year 2010 Publication EGU Geophysical Abstracts Abbreviated Journal  
  Volume Issue Pages (down) 536  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Davila2010reliability Serial 49  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: