toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Soh, Q.Y.; O’Dwyer, E.; Acha, S.; Shah, N. url  openurl
  Title Robust optimisation of combined rainwater harvesting and flood mitigation systems Type Journal Article
  Year 2023 Publication Water Research Abbreviated Journal  
  Volume 245 Issue Pages 120532  
  Keywords Rainwater harvesting, Flood mitigation, Robust stochastic optimisation, Sustainable environmental engineering, Decision tool, Urban residential estates  
  Abstract Combined large-scale rainwater harvesting (RWH) and flood mitigation systems are promising as a sustainable water management strategy in urban areas. These are multi-purpose infrastructure that not only provide a secondary, localised water resource, but can also reduce discharge and hence loads on any downstream wastewater networks if these are integrated into the wider water network. However, the performance of these systems is dependent on the specific design used for its local catchment which can vary significantly between different implementations. A multitude of design strategies exist, however there is no universally accepted standard framework. To tackle these issues, this paper presents a two-player optimisation framework which utilises a stochastic design optimisation model and a competing, high-intensity rainfall design model to optimise passively-operated RWH systems. A customisable tool set is provided, under which optimisation models specific to a given catchment can be built quickly. This reduces the barriers to implementing computationally complex sizing strategies and encouraging more resource-efficient systems to be built. The framework was applied to a densely populated high-rise residential estate, eliminating overflow events from historical rainfall. The optimised configuration resulted in a 32% increase in harvested water yield, but its ability to meet irrigation demands was limited by the operational levels of the treatment pump. Hence, with the inclusion of operational levels in the optimisation model, the framework can provide an efficient large-scale RWH system that is capable of simultaneously meeting water demands and reducing stresses within and beyond its local catchment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Soh2023120532 Serial 243  
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S. url  openurl
  Title Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume 308 Issue Pages 136278  
  Keywords Adsorbents, Adsorption, Techniques, Uranium, Wastewater  
  Abstract Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131  
Permanent link to this record
 

 
Author Lartigue, J.E.; Charrasse, B.; Reile, B.; Descostes, M. url  openurl
  Title Aqueous inorganic uranium speciation in European stream waters from the FOREGS dataset using geochemical modelling and determination of a U bioavailability baseline Type Journal Article
  Year 2020 Publication Chemosphere Abbreviated Journal  
  Volume 251 Issue Pages 126302  
  Keywords Bioavailable fraction, Geochemical mapping / baseline, Modelling, Speciation, Stream water, Uranium  
  Abstract The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 μg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 μg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10−3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lartigue_aqueous_2020 Serial 141  
Permanent link to this record
 

 
Author Veerasamy, N.; Kasar, S.; Murugan, R.; Inoue, K.; Natarajan, T.; Ramola, R.C.; Fukushi, M.; Sahoo, S.K. url  openurl
  Title 234U/238U disequilibrium and 235U/238U ratios measured using MC-ICP-MS in natural high background radiation area soils to understand the fate of uranium Type Journal Article
  Year 2023 Publication Chemosphere Abbreviated Journal  
  Volume 323 Issue Pages 138217  
  Keywords HBRA, MC-ICP-MS, Monazites, U/U, Uranium  
  Abstract The Chhatrapur-Gopalpur coastal area in Odisha, India is a well-known natural high background radiation (HBRA) area due to the abundance of monazite (a thorium bearing radioactive mineral) in beach sands and soils. Recent studies on Chhatrapur-Gopalpur HBRA groundwater have reported high concentrations of uranium and its decay products. Therefore, the soils of the Chhatrapur-Gopalpur HBRA are reasonably suspected as the sources of these high uranium concentrations in groundwater. In this report, first the uranium concentrations in soil samples were measured using inductively coupled plasma mass spectrometry (ICP-MS) and they were found to range from 0.61 ± 0.01 to 38.59 ± 0.16 mg kg−1. Next, the 234U/238U and 235U/238U isotope ratios were measured to establish a baseline for the first time in Chhatrapur-Gopalpur HBRA soil. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was used for measurement of these isotope ratios. The 235U/238U ratio was observed to be the normal terrestrial value. The 234U/238U activity ratio, was calculated to understand the secular equilibrium between 234U and 238U in soil and it varied from 0.959 to 1.070. To understand the dynamics of uranium in HBRA soil, physico-chemical characteristics of soil were correlated with uranium isotope ratios and this correlation of 234U/238U activity ratio indicated the leaching of 234U from Odisha HBRA soil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ veerasamy_234u238u_2023 Serial 149  
Permanent link to this record
 

 
Author Kumar, V.; Setia, R.; Pandita, S.; Singh, S.; Mitran, T. url  openurl
  Title Assessment of U and As in groundwater of India: A meta-analysis Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume 303 Issue Pages 135199  
  Keywords Arsenic, Geology, Groundwater, Health risk, Soil texture, Uranium  
  Abstract More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) \textgreater North Zone (37.7 μg/L) \textgreater South Zone (13.5 μg/L)\textgreater Central Zone (7.4 μg/L) \textgreater East Zone (5.7 μg/L) \textgreaterSoutheast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)\textgreaterCentral Zone (260.4 μg/L)\textgreaterNorth Zone (67.7 μg/L)\textgreaterEast Zone (60.3 μg/L)\textgreaterNorth-east zone (9.78 μg/L)\textgreaterWest zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ kumar_assessment_2022 Serial 161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: