|   | 
Details
   web
Records
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L.
Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 55 Issue (down) 4 Pages 1476-1484
Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis
Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W.
Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 54 Issue (down) 4 Pages 1175-1184
Keywords Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine
Abstract The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193
Permanent link to this record
 

 
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T.
Title Sustainability and virtual water: The lessons of history Type Journal Article
Year 2022 Publication Geography and Sustainability Abbreviated Journal
Volume 3 Issue (down) 4 Pages 358-365
Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy
Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-6839 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272
Permanent link to this record
 

 
Author Klaus, J.; Külls, C.; Dahan, O.
Title Evaluating the recharge mechanism of the Lower Kuiseb Dune area using mixing cell modeling and residence time data Type Journal Article
Year 2008 Publication Journal of Hydrology Abbreviated Journal
Volume 358 Issue (down) 3-4 Pages 304-316
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Klaus2008evaluating Serial 28
Permanent link to this record
 

 
Author Dahan, O.; Tatarsky, B.; Enzel, Y.; Külls, C.; Seely, M.; Benito, G.
Title Dynamics of flood water infiltration and ground water recharge in hyperarid desert Type Journal Article
Year 2008 Publication Groundwater Abbreviated Journal
Volume 46 Issue (down) 3 Pages 450-461
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Blackwell Publishing Inc Malden, USA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Dahan2008dynamics Serial 27
Permanent link to this record