toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Haque, N.; Norgate, T. url  openurl
  Title The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia Type Journal Article
  Year 2014 Publication Journal of Cleaner Production Abbreviated Journal  
  Volume 84 Issue Pages 382-390  
  Keywords (down) Copper, GHG emission, Gold, In-situ leaching, LCA, Uranium  
  Abstract In-situ leaching (ISL) is a chemical method for recovering useful minerals and metals directly from underground ore bodies which is also referred to as ‘solution mining’. ISL is commonly used for uranium mining, accounting for about 45% of global production. The main benefits are claimed to be a lower environmental impact in terms of visual disturbances, emissions, lower energy use, cost compared with conventional open-cut or underground mining methods, and potential utilisation of lower grade resources. However, there is a lack of reported studies on the assessment of the environmental impacts of ISL, particularly greenhouse gas (GHG) emissions using life cycle assessment (LCA) methodology. The SimaPro LCA software was used to estimate the GHG footprint of the ISL of uranium, gold and copper. The total GHG emissions were estimated to be 38.0 kg CO2-e/kg U3O8 concentrate (yellowcake), 29 t CO2-e/kg gold, and 4.78 kg CO2-e/kg Cu. The GHG footprint of ISL uranium was significantly lower than that of conventional mining, however, the footprints of copper and gold were not much less compared with conventional mining methods. This is due to the lower ore grade of ISL deposits and recovery compared with high ore grades and recovery of conventional technology. Additionally, the use of large amount of electricity for pumping in case of ISL contributes to this result. The electricity consumed in pumping leaching solutions was by far the greatest contributor to the well-field related activities associated with ISL of uranium, gold and copper. The main strategy to reduce the GHG footprint of ISL mining should be to use electricity derived from low emission sources. In particular, renewable sources such as solar would be suitable for ISL as these operations are typically in remote locations with smaller deposits compared with conventional mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ haque_greenhouse_2014 Serial 208  
Permanent link to this record
 

 
Author Frumkin, A.; Gvirtzman, H. url  openurl
  Title Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel Type Journal Article
  Year 2006 Publication Journal of Hydrology Abbreviated Journal  
  Volume 318 Issue 1 Pages 316-333  
  Keywords (down) Confined karst, Groundwater, HS, Maze caves, Rising water, Yarkon–Taninim aquifer  
  Abstract It is proposed that a geothermal artesian karstic system at the central part of the Yarkon–Taninim aquifer creates the ‘Ayalon Saline Anomaly’ (ASA), whose mechanism has been under debate for several decades. A 4-year-long detailed groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied by a comprehensive survey of karstic voids. Results indicate the rising of warm-brackish groundwater through highly permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area contains ‘hot spots’, where groundwater contrasts with ‘normal’ water hundreds of meters away. The ASA temperature reaches 30°C (∼5°C warmer than its surroundings), chloride concentration reaches 528mg/l (50–100mg/l in the surrounding), H2S concentration reaches 5.6mg/l (zero all around) and pH value is 7.0 (compared with 7.8 around). Subsequently, the hydrothermal water flows laterally of at the watertable horizon through horizontal conduits, mixing with ‘normal’ fresh water which had circulated at shallow depth. Following rainy seasons, maximal watertable rise is observed in the ASA compared to its surroundings. Regional hydrogeology considerations suggest that the replenishment area for the ASA water is at the Samaria Mountains, east of the ASA. The water circulates to a great depth while flowing westward, and a cross-formational upward flow is then favored close the upper sub-aquifer’s confinement border.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ frumkin_cross-formational_2006 Serial 117  
Permanent link to this record
 

 
Author Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A. url  openurl
  Title Durability assessment of GFRP rebars in marine environments Type Journal Article
  Year 2022 Publication Construction and Building Materials Abbreviated Journal  
  Volume 329 Issue Pages 127028  
  Keywords (down) Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete  
  Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83  
Permanent link to this record
 

 
Author Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y. url  openurl
  Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
  Year 2014 Publication Hydrometallurgy Abbreviated Journal  
  Volume 150 Issue Pages 99-106  
  Keywords (down) Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution  
  Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201  
Permanent link to this record
 

 
Author Tujchneider, O.; Christelis, G.; Gun, J.V. der url  openurl
  Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
  Year 2013 Publication Environmental Development Abbreviated Journal  
  Volume 7 Issue Pages 6-16  
  Keywords (down) Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management  
  Abstract Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-4645 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: