toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stone, A.E.C.; Edmunds, W.M. url  openurl
  Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
  Year 2014 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 105 Issue Pages 41-51  
  Keywords (down) Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge  
  Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Stone201441 Serial 279  
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L. url  openurl
  Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 861 Issue Pages 160636  
  Keywords (down) ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium  
  Abstract Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138  
Permanent link to this record
 

 
Author Pontér, S.; Rodushkin, I.; Engström, E.; Rodushkina, K.; Paulukat, C.; Peinerud, E.; Widerlund, A. url  openurl
  Title Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 793 Issue Pages 148441  
  Keywords (down) Isotope ratios, Mine water, Sediments, Uranium  
  Abstract The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment’s pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased \textgreater20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ponter_early_2021 Serial 154  
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C. url  openurl
  Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
  Year 2020 Publication Applied Geochemistry Abbreviated Journal  
  Volume 123 Issue Pages 104780  
  Keywords (down) Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos  
  Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Cyprus Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76  
Permanent link to this record
 

 
Author Karaimeh, S.A. url  openurl
  Title Maintaining desert cultivation: Roman, Byzantine, and Early Islamic water-strategies at Udhruh region, Jordan Type Journal Article
  Year 2019 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 166 Issue Pages 108-115  
  Keywords (down) Irrigation, Qanat, Cultivation, Arid environment, Nabataean, Jordan  
  Abstract The site of Udhruh is located in the arid desert of southern Jordan, about 15 km to the east of Petra. The site was built by the Nabataeans but expanded by the Romans (as a defensive site) and was continuously occupied until the Early Islamic period. It receives less than the 200 mm of annual precipitation, which is crucial for agricultural cultivation. Archaeological evidence from earlier excavations together with new data from several survey projects indicate that areas around Udhruh were cultivated throughout the Roman, Byzantine, and Early Islamic periods (300 BCE–800 CE). The fundamental question is: how did the people of Udhruh sustain their community in the desert, and how did they transform the desert into arable land? The landscape could be utilised thanks to sophisticated water management and irrigation techniques. At least four underground qanat systems were identified providing Udhruh with access to groundwater. At the terminal end of the qanat systems, several types of closed surface channels conveyed the water to reservoirs, which subsequently distributed the water to the field systems. The water systems of Udhruh differ from the well-known Nabataean systems in the surrounding area. As Udhruh was taken over by the Roman army in 106 CE, this study analyses how the Nabataean water systems continued to function and adapt through the Roman and Byzantine periods. A complete understanding of Udhruh’s water systems helps to reconstruct past land use, agricultural activity, and irrigation practices in a currently arid region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Alkaraimeh2019108 Serial 271  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: