toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. url  openurl
  Title Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
  Year 2021 Publication Irrigation and Drainage Abbreviated Journal  
  Volume 70 Issue 3 Pages 458-469  
  Keywords (down) irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale  
  Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89  
Permanent link to this record
 

 
Author Vushe, A.; Amutenya, M. url  openurl
  Title Investigating nitrate retention capacity, elementary and mineral composition of Kalahari sandy soils at Mashare farm in Namibia, Okavango river basin Type Journal Article
  Year 2019 Publication Scientific African Abbreviated Journal  
  Volume 6 Issue Pages 00193  
  Keywords (down) Irrigated field, Cultivated Kalahari sandy soil, Leaching, Nitrate retention capacity, Quartz mineral, Water saturated  
  Abstract Kalahari sands which cover a large part of Southern Africa and extend into Central Africa are infertile and marginal soils for intensive agriculture. Therefore, high nitrogen fertilisation rates may degrade ecosystems of rivers with catchments covered by the Kalahari sands. A study on Mashare Farm located in the Okavango River basin showed that irrigated Kalahari sandy soils had a nitrate retention capacity, which enabled the soil to resist nitrate leaching in water saturated conditions. The irrigated soils were modified by agricultural activities; hence this study investigated if uncultivated and cultivated Kalahari sand soils had similar nitrate retention properties. The elementary composition of the soils was investigated for obtaining an insight into chemical properties that may be causing the nitrate retention capacity. A permeameter was used to leach out nitrates from irrigated and uncultivated soil samples, and nitrate concentrations were measured on the leaching effluent from the permeameter. Elemental analysis was done on the cultivated and the uncultivated soil samples using a Scanning Electron Microscope, a portable X-Ray Fluorescence analyzer, and an X-Ray Diffraction machine, and the later was also used for crystalline structure analyses. Sieve analyses confirmed that the Mashare’s cultivated and uncultivated topsoils were similar, and both were similar to Botswana Kalahari topsoil. The irrigated and cultivated subsoil had a higher average nitrate retention capacity of 76% compared to 73% for the uncultivated subsoil. Both samples had the same elements, although the proportions were different. Both soil samples were dominated by a quartz mineral, but the field soil had traces of palygorskite. The presence of aluminum and transition metals outside the minerals structure, but as coatings on the quartz sand grains enhanced nitrate retention capacity properties of the Kalahari sand soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-2276 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ VUSHE2019e00193 Serial 277  
Permanent link to this record
 

 
Author Burchi, S. url  openurl
  Title Legal frameworks for the governance of international transboundary aquifers: Pre- and post-ISARM experience Type Journal Article
  Year 2018 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 20 Issue Pages 15-20  
  Keywords (down) International aquifers, International aquifers agreements, International groundwater law, UN draft articles on the law of transboundary aquifers  
  Abstract Study region Africa, Latin America, Europe. Study focus Through the extensive study and mapping of the world’s aquifers that lie astride the international boundary lines of sovereign States, ISARM has awakened concerned States to the existence of aquifers stretching beyond their borders, and precipitated cooperation in generating a body of knowledge that facilitated cooperation in governance arrangements for such aquifers. In parallel, ISARM influenced the shape and direction of the United Nations “Draft articles on the law of transboundary aquifers” appended to UN Resolution 63/124 of 2008. Both stimulated cooperation among concerned States, and provided a frame of reference for the legal grounding of such cooperation in aquifer-specific agreements. New hydrological insights Through this synergistic paradigm, ISARM has made an impact on the shape and direction of cooperation in the Guaraní Aquifer in South America, and in the Iullemeden and Taoudeni/Tanezrouft Aquifer Systems (ITAS) in the Sahel region of Africa. It is having an influence on the shape and direction of cooperation being negotiated on the Stampriet Aquifer System in Southern Africa, and on the Ocotepeque-Citalá Aquifer in Central America. The link of ISARM to other international aquifer agreements on record is tenuous, and ISARM’s influence on their generation speculative. The visibility of ISARM has faded since 2012, however its legacy is lasting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ burchi_legal_2018 Serial 100  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume 428 Issue Pages 131180  
  Keywords (down) In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Wang, B.; Luo, Y.; Qian, J.-zhong; Liu, J.-hui; Li, X.; Zhang, Y.-hong; Chen, Q.-qian; Li, L.-yao; Liang, D.-ye; Huang, J. url  openurl
  Title Machine learning–based optimal design of the in-situ leaching process parameter (ISLPP) for the acid in-situ leaching of uranium Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 626 Issue Pages 130234  
  Keywords (down) In-situ leaching, Injection rate design, Lixiviant concentration design, Machine learning, Simulation-optimisation, Uncertainty  
  Abstract The migration process of leached uranium in the in-situ leaching of uranium is considered a typical reactive transport problem. During this process, the lixiviant concentration and injection rate are important in-situ leaching process parameters (ISLPP) to efficiently recover uranium. However, several uncertain factors affect the outcomes of the ISLPP design. In addition, the repeated use of the reactive transport model (RTM) for investigating the acid in-situ leaching of uranium with the application of the Monte Carlo method leads to a substantial computational load. For this reason, a machine learning (ML)–based surrogate model was developed with the backpropagation neural network (BPNN) method to replace the RTM under the condition of uncertain parameters. Moreover, the simulated annealing optimisation model for ISLPP was created based on the proposed surrogate model. The optimal ISLPP was achieved that generated maximum profits from uranium recovery under different lixiviant prices, uranium prices and exploitation times. The optimal design framework of ISLPP based on the proposed ML algorithm was then applied in the Bayan-Uul sandstone-type uranium deposit in Inner Mongolia, China. From our analysis, it was demonstrated that the ML-based surrogate model exhibited great fitness with the RTM. The optimal results of the ISLPP indicated that the lixiviant concentration and injection rate could be adjusted based on the fluctuations in lixiviant price, uranium price and exploitation time. If the prices of sulphuric acid were high, a specific concentration of hydrogen peroxide could be injected into the injection well to promote the oxidation and dissolution of the uranium ore to increase the income from the uranium recovery. The optimisation model can also use the ISLPP scheme to boost the revenues from different lixiviant prices, uranium prices and exploitation times under the uncertainty of porosity, illustrating the applicability of the ML-based optimal design method of ISLPP in ISL mining. A general framework for developing surrogate models, as well as for conducting uncertainty analyses for a wide range of groundwater models was proposed here yielding valuable insights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_machine_2023 Serial 210  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: