toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K. url  openurl
  Title Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 775 Issue Pages 145787  
  Keywords (down) Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium  
  Abstract Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146  
Permanent link to this record
 

 
Author Bresinsky, L.; Kordilla, J.; Hector, T.; Engelhardt, I.; Livshitz, Y.; Sauter, M. url  openurl
  Title Managing climate change impacts on the Western Mountain Aquifer: Implications for Mediterranean karst groundwater resources Type Journal Article
  Year 2023 Publication Journal of Hydrology X Abbreviated Journal  
  Volume 20 Issue Pages 100153  
  Keywords (down) Groundwater recharge, Storage, Hydrogeological droughts, Climate change effects, Groundwater management, Mitigation of climate change effects  
  Abstract Many studies highlight the decrease in precipitation due to climate change in the Mediterranean region, making it a prominent hotspot. This study examines the combined impacts of climate change and three groundwater demand scenarios on the water resources of the Western Mountain Aquifer (WMA) in Israel and the West Bank. While commonly used methods for quantifying groundwater recharge and water resources rely on regression models, it is important to acknowledge their limitations when assessing climate change impacts. Regression models and other data-driven approaches are effective within observed variability but may lack predictive power when extrapolated to conditions beyond historical fluctuations. A comprehensive assessment requires distributed process-based numerical models incorporating a broader range of relevant physical flow processes and, ideally, ensemble model projections. In this study, we simulate the dynamics of dual-domain infiltration and precipitation partitioning using a HydroGeoSphere (HGS) model for variably saturated water flow coupled to a soil-epikarst water balance model in the WMA. The model input includes downscaled high-resolution climate projections until 2070 based on the IPCC RCP4.5 scenario. The results reveal a 5% to 10% decrease in long-term average groundwater recharge compared to a 30% reduction in average precipitation. The heterogeneity of karstic flow and increased intensity of individual rainfall events contribute to this mitigated impact on groundwater recharge, underscoring the importance of spatiotemporally resolved climate models with daily precipitation data. However, despite the moderate decrease in recharge, the study highlights the increasing length and severity of consecutive drought years with low recharge values. It emphasizes the need to adjust current management practices to climate change, as freshwater demand is expected to rise during these periods. Additionally, the study examines the emergence of hydrogeological droughts and their propagation from the surface to the groundwater. The results suggest that the 48-month standardized precipitation index (SPI-48) is a suitable indicator for hydrogeological drought emergence due to reduced groundwater recharge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Bresinsky2023100153 Serial 223  
Permanent link to this record
 

 
Author Gil-Márquez, J.M.; Sültenfuß, J.; Andreo, B.; Mudarra, M. url  openurl
  Title Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 580 Issue Pages 124263  
  Keywords (down) Groundwater dating, Evaporite karst, Brine spring, Free-shape models  
  Abstract The hydrogeological functioning of four different areas in a complex evaporite-karst unit of predominantly aquitard behavior in S Spain was investigated. Environmental dating tracers (3H, 3He, 4He, CFC-12, SF6) and hydrochemical data were determined from spring samples to identify and characterize groundwater flow components of different residence times in the media. Results show a general geochemical evolution pattern, from higher (recharge areas) to lower positions (discharge areas), in which mineralization rises as well as the value of the rCl−/SO42−, evidencing longer water-rock interaction. Ne values show degassing of most of the samples, favored by the high salinity of groundwater and the development of karstification so that the concentration of all the considered gases were corrected according to the difference between the theoretical and the measured Ne. The presence of modern groundwater in every sample was proved by the detection of 3H and CFC-12. At the opposite, the higher amount of radiogenic 4He in most samples also indicates that they have an old component. The 3H/3He dating method does not give reliable ages as a consequence of degassing and the large uncertainty of the 3He/4He ratios of the sources for the radiogenic Helium. The large SF6 concentrations suggest terrigenic production related to halite and dolomite. Binary Mixing and Free Shape Models were created based on 3H and CFC-12 data to interpret the age distribution of the samples. Two parameters (GA50 and >70%) were proposed as an indicator of that distribution, as they provide further information than the mean age. Particularly, GA50 is derived from the median groundwater age and is presented as a new way of interpreting mixed groundwater age data. A greater fraction of old groundwater (3H and CFC-12 free) was identified in discharge areas, while the proportion and estimated infiltration date of the younger fractions in recharge areas were higher and more recent, respectively. The application of different approaches has been useful to corroborate previous theoretical conceptual model proposed for the study area and to test the applicability of the used environmental tracer in dating brine groundwater and karst springs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Gilmarquez2020124263 Serial 213  
Permanent link to this record
 

 
Author Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. url  openurl
  Title A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 621 Issue Pages 129538  
  Keywords (down) Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning  
  Abstract Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226  
Permanent link to this record
 

 
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T. url  openurl
  Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
  Year 2023 Publication Geoscience Frontiers Abbreviated Journal  
  Volume 14 Issue 2 Pages 101494  
  Keywords (down) Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation  
  Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-9871 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: